Hive分桶通俗点来说就是将表(或者分区,也就是hdfs上的目录而真正的数据是存储在该目录下的文件)中文件分成几个文件去存储。比如表buck(目录,里面存放了某个文件如sz.data)文件中本来是1000000条数据,由于在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便,所以我们可以分4个文件去存储。
下面记录了从头到尾以及出现问题的操作
进行连接,创建数据库myhive2,使用该数据库
[root@mini1 ~]# cd apps/hive/bin [root@mini1 bin]# ./beeline Beeline version 1.2.1 by Apache Hive beeline> !connect jdbc:hive2://localhost:10000 Connecting to jdbc:hive2://localhost:10000 Enter username for jdbc:hive2://localhost:10000: root Enter password for jdbc:hive2://localhost:10000: ****** Connected to: Apache Hive (version 1.2.1) Driver: Hive JDBC (version 1.2.1) Transaction isolation: TRANSACTION_REPEATABLE_READ 0: jdbc:hive2://localhost:10000> show databases; +----------------+--+ | database_name | +----------------+--+ | default | | myhive | +----------------+--+ 2 rows selected (1.795 seconds) 0: jdbc:hive2://localhost:10000> create database myhive2; No rows affected (0.525 seconds) 0: jdbc:hive2://localhost:10000> use myhive2; No rows affected (0.204 seconds)
创建分桶表,导入数据,查看表内容
0: jdbc:hive2://localhost:10000> create table buck(id string,name string) 0: jdbc:hive2://localhost:10000> clustered by (id) sorted by (id) into 4 buckets 0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ','; No rows affected (0.34 seconds) 0: jdbc:hive2://localhost:10000> desc buck; +-----------+------------+----------+--+ | col_name | data_type | comment | +-----------+------------+----------+--+ | id | string | | | name | string | | +-----------+------------+----------+--+ 2 rows selected (0.55 seconds) load data local inpath '/root/sz.data' into table buck; INFO : Loading data to table myhive2.buck from file:/root/sz.data INFO : Table myhive2.buck stats: [numFiles=1, totalSize=91] No rows affected (1.411 seconds) 0: jdbc:hive2://localhost:10000> select * from buck; +----------+------------+--+ | buck.id | buck.name | +----------+------------+--+ | 1 | zhangsan | | 2 | lisi | | 3 | wangwu | | 4 | furong | | 5 | fengjie | | 6 | aaa | | 7 | bbb | | 8 | ccc | | 9 | ddd | | 10 | eee | | 11 | fff | | 12 | ggg | +----------+------------+--+
如果分桶了的话,那么buck目录下应该有4个文件,页面查看
然而并没有,还是自己导入的那个文件。
这是因为分桶不是hive活着hadoop自动给我们划分文件来分桶的,而应该是我们分好之后导入才好。
需要设置开启分桶,设置reducetask数量(跟分桶数量一致)
0: jdbc:hive2://localhost:10000> set hive.enforce.bucketing = true; No rows affected (0.063 seconds) 0: jdbc:hive2://localhost:10000> set hive.enforce.bucketing ; +------------------------------+--+ | set | +------------------------------+--+ | hive.enforce.bucketing=true | +------------------------------+--+ 1 row selected (0.067 seconds) 0: jdbc:hive2://localhost:10000> set mapreduce.job.reduces=4;
那么创建另外一个表tp,将该表数据放入到buck中(select出来insert 进去),放入的时候指定进行分桶,那么会分四桶,每个里面进行排序。那么最后buck表就进行了分桶(分桶是导入的时候就分桶的而不是自己实现分桶(文件划分))。
接下来,清空buck表信息,创建表tp,将tp中数据查询出来insert into到buck中。
0: jdbc:hive2://localhost:10000> truncate table buck; No rows affected (0.316 seconds) 0: jdbc:hive2://localhost:10000> create table tp(id string,name string) 0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ','; No rows affected (0.112 seconds) 0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz.data' into table tp; INFO : Loading data to table myhive2.tp from file:/root/sz.data INFO : Table myhive2.tp stats: [numFiles=1, totalSize=91] No rows affected (0.419 seconds) 0: jdbc:hive2://localhost:10000> show tables; +-----------+--+ | tab_name | +-----------+--+ | buck | | tp | +-----------+--+ 2 rows selected (0.128 seconds) 0: jdbc:hive2://localhost:10000> select * from tp; +--------+-----------+--+ | tp.id | tp.name | +--------+-----------+--+ | 1 | zhangsan | | 2 | lisi | | 3 | wangwu | | 4 | furong | | 5 | fengjie | | 6 | aaa | | 7 | bbb | | 8 | ccc | | 9 | ddd | | 10 | eee | | 11 | fff | | 12 | ggg | +--------+-----------+--+ 12 rows selected (0.243 seconds) 0: jdbc:hive2://localhost:10000> insert into buck 0: jdbc:hive2://localhost:10000> select id,name from tp distribute by (id) sort by (id); INFO : Number of reduce tasks determined at compile time: 4 INFO : In order to change the average load for a reducer (in bytes): INFO : set hive.exec.reducers.bytes.per.reducer=<number> INFO : In order to limit the maximum number of reducers: INFO : set hive.exec.reducers.max=<number> INFO : In order to set a constant number of reducers: INFO : set mapreduce.job.reduces=<number> INFO : number of splits:1 INFO : Submitting tokens for job: job_1508216103995_0028 INFO : The url to track the job: http://mini1:8088/proxy/application_1508216103995_0028/ INFO : Starting Job = job_1508216103995_0028, Tracking URL = http://mini1:8088/proxy/application_1508216103995_0028/ INFO : Kill Command = /root/apps/hadoop-2.6.4/bin/hadoop job -kill job_1508216103995_0028 INFO : Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 4 INFO : 2017-10-19 03:57:23,631 Stage-1 map = 0%, reduce = 0% INFO : 2017-10-19 03:57:29,349 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.18 sec INFO : 2017-10-19 03:57:40,096 Stage-1 map = 100%, reduce = 25%, Cumulative CPU 2.55 sec INFO : 2017-10-19 03:57:41,152 Stage-1 map = 100%, reduce = 75%, Cumulative CPU 5.29 sec INFO : 2017-10-19 03:57:42,375 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 6.61 sec INFO : MapReduce Total cumulative CPU time: 6 seconds 610 msec INFO : Ended Job = job_1508216103995_0028 INFO : Loading data to table myhive2.buck from hdfs://192.168.25.127:9000/user/hive/warehouse/myhive2.db/buck/.hive-staging_hive_2017-10-19_03-57-14_624_1985499545258899177-1/-ext-10000 INFO : Table myhive2.buck stats: [numFiles=4, numRows=12, totalSize=91, rawDataSize=79] No rows affected (29.238 seconds) 0: jdbc:hive2://localhost:10000> select * from buck; +----------+------------+--+ | buck.id | buck.name | +----------+------------+--+ | 11 | fff | | 4 | furong | | 8 | ccc | | 1 | zhangsan | | 12 | ggg | | 5 | fengjie | | 9 | ddd | | 2 | lisi | | 6 | aaa | | 10 | eee | | 3 | wangwu | | 7 | bbb | +----------+------------+--+
到这应该就知道已经分桶了,否则id应该是1-12出来的,这是因为在4个桶中,分别进行了各自的排序,而不是跟order by一样会进行全局排序,页面查看下吧。
能看到确实分了4桶,客户端查看下内容吧(可以直接解析hdfs操作的)
0: jdbc:hive2://localhost:10000> dfs -ls /user/hive/warehouse/myhive2.db/buck; +-----------------------------------------------------------------------------------------------------------+--+ | DFS Output | +-----------------------------------------------------------------------------------------------------------+--+ | Found 4 items | | -rwxr-xr-x 2 root supergroup 22 2017-10-19 03:57 /user/hive/warehouse/myhive2.db/buck/000000_0 | | -rwxr-xr-x 2 root supergroup 34 2017-10-19 03:57 /user/hive/warehouse/myhive2.db/buck/000001_0 | | -rwxr-xr-x 2 root supergroup 13 2017-10-19 03:57 /user/hive/warehouse/myhive2.db/buck/000002_0 | | -rwxr-xr-x 2 root supergroup 22 2017-10-19 03:57 /user/hive/warehouse/myhive2.db/buck/000003_0 | +-----------------------------------------------------------------------------------------------------------+--+ 5 rows selected (0.028 seconds) 0: jdbc:hive2://localhost:10000> dfs -cat /user/hive/warehouse/myhive2.db/buck/000000_0; +-------------+--+ | DFS Output | +-------------+--+ | 11,fff | | 4,furong | | 8,ccc | +-------------+--+ 3 rows selected (0.02 seconds) 0: jdbc:hive2://localhost:10000> dfs -cat /user/hive/warehouse/myhive2.db/buck/000001_0; +-------------+--+ | DFS Output | +-------------+--+ | 1,zhangsan | | 12,ggg | | 5,fengjie | | 9,ddd | +-------------+--+ 4 rows selected (0.08 seconds) 0: jdbc:hive2://localhost:10000> dfs -cat /user/hive/warehouse/myhive2.db/buck/000002_0; +-------------+--+ | DFS Output | +-------------+--+ | 2,lisi | | 6,aaa | +-------------+--+ 2 rows selected (0.088 seconds) 0: jdbc:hive2://localhost:10000> dfs -cat /user/hive/warehouse/myhive2.db/buck/000003_0; +-------------+--+ | DFS Output | +-------------+--+ | 10,eee | | 3,wangwu | | 7,bbb | +-------------+--+ 3 rows selected (0.062 seconds)
注: select id,name from tp distribute by (id) sort by (id)语句中distribute by (id) sort by (id)知道根据id进行分桶(根据id进行hash散列),根据id进行排序默认升序。如果两者字段相同那么可以使用cluster by (id);也就是说可以写成
insert into buck select id ,name from p cluster by (id);
效果是一样的。
分桶的作用
观察下面的语句。
select a.id,a.name,b.addr from a join b on a.id = b.id;
如果a表和b表已经是分桶表,而且分桶的字段是id字段,那么做这个操作的时候就不需要再进行全表笛卡尔积了。