基于 ChatGLM-6B 搭建个人专属知识库

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 之前树先生教过大家如何利用微调打造一个垂直领域的 LLM 专属模型。但是微调一方面需要专业知识,通常需要很多计算资源和时间,以便在不同的超参数设置上训练多个模型并选择最佳的一个,另一方面动态扩展比较差,新增和修改原有的数据都要重新微调一次。总得来说对非专业人员不友好。今天树先生教大家无需微调就能实现垂直领域的专业问答,利用 ChatGLM-6B + langchain 实现个人专属知识库,非常简单易上手。

之前树先生教过大家如何利用微调打造一个垂直领域的 LLM 专属模型。但是微调一方面需要专业知识,通常需要很多计算资源和时间,以便在不同的超参数设置上训练多个模型并选择最佳的一个,另一方面动态扩展比较差,新增和修改原有的数据都要重新微调一次。总得来说对非专业人员不友好。

ChatGLM-6B 部署与 P-Tuning 微调实战

今天树先生教大家无需微调就能实现垂直领域的专业问答,利用 ChatGLM-6B + langchain 实现个人专属知识库,非常简单易上手。


技术原理

项目实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的top k个 -> 匹配出的文本作为上下文和问题一起添加到 prompt 中 -> 提交给 LLM 生成回答。

从上面就能看出,其核心技术就是向量 embedding,将用户知识库内容经过 embedding 存入向量知识库,然后用户每一次提问也会经过 embedding,利用向量相关性算法(例如余弦算法)找到最匹配的几个知识库片段,将这些知识库片段作为上下文,与用户问题一起作为 promt 提交给 LLM 回答,很好理解吧。一个典型的 prompt 模板如下:

"""
已知信息:
{context} 
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 
问题是:{question}
"""

更多关于向量 embedding 的内容可以参考我之前写的一篇文章。

ChatGPT 引爆向量数据库赛道


使用场景

可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色

  • 上传公司财报,充当财务分析师
  • 上传客服聊天记录,充当智能客服
  • 上传经典Case,充当律师助手
  • 上传医院百科全书,充当在线问诊医生

等等等等。。。。


实战

这里我们选用 langchain-ChatGLM 项目示例,其他的 LLM 模型对接知识库也是一个道理。

准备工作

我们还是白嫖阿里云的机器学习 PAI 平台,使用 A10 显卡,这部分内容之前文章中有介绍。

免费部署一个开源大模型 MOSS

项目部署

环境准备好了以后,就可以开始准备部署工作了。

下载源码

git clone https://github.com/imClumsyPanda/langchain-ChatGLM.git

安装依赖

cd langchain-ChatGLM
pip install -r requirements.txt

下载模型

# 安装 git lfs
git lfs install
# 下载 LLM 模型
git clone https://huggingface.co/THUDM/chatglm-6b /your_path/chatglm-6b
# 下载 Embedding 模型
git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese /your_path/text2vec
# 模型需要更新时,可打开模型所在文件夹后拉取最新模型文件/代码
git pull

参数调整

模型下载完成后,请在 configs/model_config.py 文件中,对embedding_model_dictllm_model_dict参数进行修改。

embedding_model_dict = {
    "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
    "ernie-base": "nghuyong/ernie-3.0-base-zh",
    "text2vec": "/your_path/text2vec"
}
llm_model_dict = {
    "chatyuan": "ClueAI/ChatYuan-large-v2",
    "chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
    "chatglm-6b-int4": "THUDM/chatglm-6b-int4",
    "chatglm-6b-int8": "THUDM/chatglm-6b-int8",
    "chatglm-6b": "/your_path/chatglm-6b",
}

项目启动

Web 模式启动

pip install gradio
python webui.py

模型配置

上传知识库

知识库问答

API 模式启动

python api.py

命令行模式启动

python cli_demo.py


改进

Gradio 页面太过于简陋,可作为后台管理员操作页面,如果要开放给用户使用就不合适了,树先生在 Chatgpt-Next-Web 项目基础上进行了适配修改,打造了一款面向用户使用的本地知识库前端。

授权码控制

选择知识库

基于知识库问答

显示答案来源

PS:这个知识库是我上传的原始知识库,所以来源这块数据展示效果不好,更好的做法是经过一遍数据治理再上传。


感兴趣的朋友可以私信我,我会免费给大家提供知识库体验地址。


相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
8月前
|
人工智能 大数据 数据处理
【开源项目推荐】8.9K纯中文本地GPT知识库搭建项目
【开源项目推荐】8.9K纯中文本地GPT知识库搭建项目
1187 57
|
8月前
|
机器学习/深度学习 自然语言处理 机器人
【RAG实践】基于LlamaIndex和Qwen1.5搭建基于本地知识库的问答机器人
LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。
|
人工智能 监控 Swift
魔搭社区LLM模型部署实践 —— 以ChatGLM3为例
本文将以ChatGLM3-6B为例,介绍在魔搭社区如何部署LLM
|
6月前
|
人工智能 JSON 自然语言处理
国内大模型LLM选择以及主流大模型快速使用教程[GLM4/Qwen/Baichuan/Coze/Kimi]
【7月更文挑战第7天】国内大模型LLM选择以及主流大模型快速使用教程[GLM4/Qwen/Baichuan/Coze/Kimi]
273 10
国内大模型LLM选择以及主流大模型快速使用教程[GLM4/Qwen/Baichuan/Coze/Kimi]
|
7月前
|
机器学习/深度学习 算法 开发工具
通义千问2(Qwen2)大语言模型在PAI-QuickStart的微调、评测与部署实践
阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对Qwen2模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现Qwen2系列模型的微调、评测和快速部署。
|
8月前
|
机器人 Linux API
基于Ollama+AnythingLLM轻松打造本地大模型知识库
Ollama是开源工具,简化了在本地运行大型语言模型(ile优化模型运行,支持GPU使用和热加载。它轻量、易用,可在Mac和Linux上通过Docker快速部署。AnythingLLM是Mintplex Labs的文档聊天机器人,支持多用户、多种文档格式,提供对话和查询模式,内置向量数据库,可高效管理大模型和文档。它也是开源的,能与Ollama结合使用,提供安全、低成本的LLM体验。这两款工具旨在促进本地高效利用和管理LLMs。
148342 32
|
7月前
|
机器学习/深度学习 存储 SQL
一文彻底搞定 RAG、知识库、 Llama-3
Llama-3 用于 RAG,增强大语言模型的性能,整合外部知识。关键组件包括:1) 自定义知识库,存储更新的信息;2) 分块处理,拆解文本便于管理;3) 嵌入模型,转化多模态数据为数值向量;4) 向量数据库,快速检索相似性;5) 用户聊天界面,交互平台;6) 查询引擎,获取上下文生成响应;7) 提示词模板,结合查询与知识生成提示。整个流程确保了 RAG 系统的有效性和响应能力。本文为转载,来自:https://mp.weixin.qq.com/s/Xue-9FKMMVKBSzIZC3JJdA
|
8月前
|
人工智能 数据安全/隐私保护
|
7月前
|
人工智能 小程序 机器人
开源一个RAG大模型本地知识库问答机器人-ChatWiki
准备工作 再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求 • Cpu:最低需要2 Core • RAM:最低需要4GB 开始安装 ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装:
336 0
|
8月前
|
机器学习/深度学习 Shell C++
测试本地部署ChatGLM-6B | ChatGPT
ChatGLM-6B是款62亿参数的中英对话模型,类似ChatGPT,可在6GB显存(INT4量化)的GPU或CPU上运行。它提供流畅、多样的对话体验。用户可从Hugging Face或清华云下载模型配置。部署涉及创建Python环境,安装依赖,下载模型到`ckpt`文件夹。测试时加载tokenizer和模型,使用示例代码进行交互。应用包括基于MNN和JittorLLMs的推理实现,以及langchain-ChatGLM、闻达、chatgpt_academic和glm-bot等项目。5月更文挑战第10天
185 1