文本生成图像这么火,你需要了解这些技术的演变(2)

简介: 文本生成图像这么火,你需要了解这些技术的演变

图是 Google 使用扩散模型生成图像的可视化说明。

扩散模型与其他类别的生成模型的比较。

首先,作者训练了一个 3.5B 参数扩散模型,该模型使用文本编码器以自然语言描述为条件。接下来,他们比较了两种将扩散模型引导到文本 prompt 的技术:CLIP 引导和无分类器引导(后者能产生更好的结果)。

分类器引导允许扩散模型以分类器的标签为条件,并且来自分类器的梯度用于引导样本朝向标签。

无分类器引导不需要训练单独的分类器模型。这只是一种引导形式,在有标签和没有标签的扩散模型的预测之间进行插值。

正如作者所说,无分类引导有两个吸引人的特性。首先,它允许单个模型在引导过程中利用自己的知识,而不是依赖于单独(有时更小的)分类模型的知识。其次,它简化了对难以用分类器预测的信息(例如文本)进行调节时的引导。

在 CLIP 引导下,分类器被替换为 CLIP 模型。它使用图像的点积和相对于图像的标题编码的梯度。

在分类器和 CLIP 引导中,我们必须在噪声图像上训练 CLIP,以便在反向扩散过程中获得正确的梯度。作者使用了经过明确训练具有噪声感知能力的 CLIP 模型,这些模型被称为噪声 CLIP 模型。尚未在噪声图像上训练的公共 CLIP 模型仍可用于引导扩散模型,但噪声 CLIP 引导对这种方法表现良好。

文本条件扩散模型是一种增强的 ADM 模型架构,它基于噪声图像 xₜ 和相应的文本标题 c 预测下一个扩散步骤的图像。

视觉部分是修改后的 U-Net 架构。U-Net 模型使用一堆残差层和下采样卷积,然后是一堆带有上采样卷积的残差层,使用残差连接(skip connection)连接具有相同空间大小的层。

原始的 U-Net 架构。图片来自原论文。

GLIDE 对原始 U-Net 架构的宽度、深度等方面有不同的修改,在 8×8、16×16 和 32×32 分辨率下添加了具有多个注意力头的全局注意力层。此外,还将时间步嵌入的投影添加到每个残差块中。

对于分类器引导模型,分类器架构是 U-Net 模型的下采样主干网络,在 8×8 层有一个注意力池以生成最终输出。

文本通过 transformer 模型被编码成 K 个(最大注意力跨度尚不清楚)tokens 的序列。

transformer 的输出有两种使用方式:首先,使用最终的 token 嵌入替代 ADM 模型中的类嵌入;其次,token 嵌入的最后一层(K 个特征向量的序列)分别投影到整个 ADM 模型中每个注意力层的维度,然后连接到每一层的注意力上下文。

文本 transformer 有 24 个宽度为 2048 的残差块,产生大约 1.2B 的参数。为 64×64 分辨率训练的模型的视觉部分由 2.3B 个参数组成。除了 3.5B 参数的文本条件扩散模型,作者还训练了另一个 1.5B 参数的文本条件上采样扩散模型,将分辨率提高到 256×256(这个想法在 DALL·E 中也会用到)。

上采样模型以与基本模型相同的方式以文本为条件,但使用宽度为 1024 而不是 2048 的较小文本编码器。对于 CLIP 引导,他们还训练了带噪声的 64×64 ViT-L CLIP 模型。

GLIDE 在与 DALL·E 相同的数据集上进行训练,总的训练计算量大致等于用于训练 DALL·E 的计算量。

GLIDE 在所有设置中都是最优,即使设置允许 DALL·E 使用更多的测试时间计算来得到优越的表现,同时降低 GLIDE 样本质量(通过 VAE 模糊)。


该模型经过微调以支持无条件的图像生成。这个训练过程与预训练完全一样,只是将 20% 的文本 token 序列替换为空序列。这样,模型保留了生成文本条件输出的能力,但也可以无条件地生成图像。

该模型还经过显式微调以执行修复。在微调期间,训练示例的随机区域被删除,其余部分与掩码通道一起作为附加条件信息输入模型。

GLIDE 可以迭代地使用 zero-shot 生成产生复杂场景,然后进行一系列修复编辑。

首先生成 prompt「一个舒适的客厅」的图像,然后使用修复蒙版,后续文本 prompt 在墙上添加了一幅画、一个茶几,茶几上还有一个花瓶,最后把墙移到沙发上。示例来自原论文。

DALL·E 2/unCLIP

OpenAI 于 2022 年 4 月 6 日发布了 DALL·E 2 系统。DALL·E 2 系统比原来的 DALL·E 显著提升了结果。它生成的图像分辨率提高了 4 倍(与原来的 DALL·E 和 GLIDE 相比),现在高达 1024×1024 像素。DALL·E 2 系统背后的模型称为 unCLIP。

作者发现,就照片写实而言,人类略微喜欢 GLIDE 而不是 unCLIP,但差距非常小。在具有类似真实感的情况下,在多样性方面,unCLIP 比 GLIDE 更受青睐,突出了它的好处之一。请记住,GLIDE 本身比 DALL·E 1 更受欢迎,所以说 DALL·E 2 比它的前身 DALL·E 1 有了显著改进。

对于「用克劳德 · 莫奈的风格画一幅狐狸坐在日出时分田野里的画」的要求,两个版本的系统生成的图片,图片来自原文章。

DALL·E 2 可以将概念、属性和风格结合起来:

原文中的示例。

DALL·E 2 还可以基于文本引导进行图像编辑,这是 GLIDE 中的功能。它可以在考虑阴影、反射和纹理的同时添加和删除元素:

将柯基犬添加到图像上的特定位置,图片来自原论文中。

DALL·E 2 还可用于生成原始图像的变体:

生成图像的变体,图片来自原文。

DALL·E 2 也存在一些问题。特别是 unCLIP 在将属性绑定到对象方面比 GLIDE 模型更差。例如,unCLIP 比 GLIDE 更难面对必须将两个单独的对象(立方体)绑定到两个单独的属性(颜色)的 prompt:


unCLIP 生成连贯的文本上也有一些困境:



另一个问题是 unCLIP 很难在复杂场景中生成细节:


模型内部发生了一些改变。下图是 CLIP 和 GLIDE 的结合,模型本身(全文条件图像生成堆栈)在论文内部称为 unCLIP,因为它通过反转 CLIP 图像编码器生成图像。

该模型的工作方式如下:CLIP 模型是单独训练的。然后 CLIP 文本编码器为输入文本(标题)生成嵌入。然后一个特殊的先验模型基于文本嵌入生成图像嵌入。然后扩散解码器基于图像嵌入生成图像。解码器本质上将图像嵌入反转回图像。

系统的宏观概述。一些细节(如解码器文本条件)没有显示。图片来自原论文。

相关文章
|
6月前
|
机器学习/深度学习 算法 计算机视觉
利用深度学习技术实现自动图像风格转换
本文将介绍如何利用深度学习技术中的神经网络结构,例如卷积神经网络和生成对抗网络,来实现自动图像风格转换。通过对图像特征的提取和风格迁移算法的应用,我们可以实现将一幅图像的风格转换为另一幅图像的艺术效果,为图像处理领域带来全新的可能性。
|
人工智能 文字识别 安全
关于“文档图像前沿技术探索 —多模态及图像安全”专题报告分享
>10月14日第六届[中国模式识别与计算机视觉大会](https://www.prcv2023.cn/2023prcv)在厦门举办。PRCV 2023由中国计算机学会(CCF)、中国自动化学会(CAA)、中国图象图形学学会(CSIG)和中国人工智能学会(CAAI)联合主办,厦门大学承办,是国内顶级的模式识别和计算机视觉领域学术盛会,CCF推荐会议(C类)。 本届会议主题为“相约鹭岛,启智未来”。会议旨在汇聚国内国外模式识别和计算机视觉理论与应用研究的广大科研工作者及工业界同行,共同分享我国模式识别与计算机视觉领域的最新理论和技术成果。 PRCV2023共设5个大
158 0
|
机器学习/深度学习 传感器 编解码
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(中)
本综述根据三个基本的CV任务和不同的数据流类型,全面调查了100多种不同的视觉Transformer,并提出了一种分类法,根据其动机、结构和应用场景来组织代表性方法。由于它们在训练设置和专用视觉任务上的差异,论文还评估并比较了不同配置下的所有现有视觉Transformer。此外,论文还揭示了一系列重要但尚未开发的方面,这些方面可能使此类视觉Transformer能够从众多架构中脱颖而出,例如,松散的高级语义嵌入,以弥合视觉Transformer与序列式之间的差距。最后,提出了未来有前景的研究方向。
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(中)
|
2天前
|
人工智能
LongAlign:港大推出的提升文本到图像扩散模型处理长文本对齐方法
LongAlign是由香港大学研究团队推出的文本到图像扩散模型的改进方法,旨在提升长文本输入的对齐精度。通过段级编码技术和分解偏好优化,LongAlign显著提高了模型在长文本对齐任务上的性能,超越了现有的先进模型。
13 1
LongAlign:港大推出的提升文本到图像扩散模型处理长文本对齐方法
|
1月前
|
编解码 人工智能 数据可视化
imagen: 具有深度语言理解的逼真的文本到图像扩散模型
imagen: 具有深度语言理解的逼真的文本到图像扩散模型
19 0
|
5月前
|
机器学习/深度学习 算法
【机器学习】剪贴画图像等文本引导运动生成技术革新
【机器学习】剪贴画图像等文本引导运动生成技术革新
50 1
|
6月前
|
人工智能 文字识别 自然语言处理
文档图像多模态大模型最新技术探索
文档图像多模态大模型最新技术探索
480 0
|
5月前
|
机器学习/深度学习 人工智能 算法
基于AI的图像风格转换系统:技术探索与实现
【6月更文挑战第7天】本文探讨了基于AI的图像风格转换系统的原理与实现,采用神经风格迁移技术,利用CNN分离并结合内容与风格。实现过程包括数据准备、构建模型(如VGG19和生成器网络)、定义内容及风格损失函数、训练模型、评估与调优,最终部署应用。尽管面临训练数据需求、计算复杂度和特定场景适应性的挑战,未来的研究将聚焦于技术提升、减少数据依赖及解决伦理隐私问题,以实现更高效智能的风格转换系统。
|
4月前
|
机器学习/深度学习 文字识别 算法
深度学习助力版面分析技术,图像“还原”有方
深度学习助力版面分析技术,图像“还原”有方
91 0
|
6月前
|
机器学习/深度学习 算法 搜索推荐
基于深度学习的图像风格转换技术
【5月更文挑战第31天】 在数字图像处理领域,风格转换技术已从传统算法演变至以深度学习为核心的智能化方法。本文深入探讨了基于卷积神经网络(CNN)的图像风格转换技术,分析了其核心原理、关键技术及应用前景。通过引入感知损失与风格损失的概念,实现了图像内容与风格的解耦和重组,使得源图像能够获得目标风格特征。此外,文章还讨论了目前技术面临的主要挑战,包括风格迁移的精度、效率以及多样化问题,并提出了潜在的改进方向。
下一篇
无影云桌面