Java 二维数组格式、二维数组内存图解、二维数组操作

简介: Java 二维数组格式、二维数组内存图解、二维数组操作

二维数组格式1

/*
    二维数组:就是元素为一维数组的一个数组。
    格式1:
        数据类型[][] 数组名 = new 数据类型[m][n];
        m:表示这个二维数组有多少个一维数组。
        n:表示每一个一维数组的元素有多少个。
    注意:
        A:以下格式也可以表示二维数组
            a:数据类型 数组名[][] = new 数据类型[m][n];
            b:数据类型[] 数组名[] = new 数据类型[m][n];
        B:注意下面定义的区别
            int x;
            int y;
            int x,y;
            int[] x;
            int[] y[];
            int[] x,y[];//这个x是一维数组,y是二维数组
*/
class Array2Demo {
    public static void main(String[] args) {
         //定义一个二维数组
         int[][] arr = new int[3][2];
         //定义了一个二维数组arr
         //这个二维数组有3个一维数组的元素
         //每一个一维数组有2个元素
         //输出二维数组名称
         System.out.println(arr); //地址值    [[I@175078b
         //输出二维数组的第一个元素一维数组的名称
         System.out.println(arr[0]); //地址值    [I@42552c
         System.out.println(arr[1]); //地址值    [I@e5bbd6
         System.out.println(arr[2]); //地址值    [I@8ee016
         //输出二维数组的元素
         System.out.println(arr[0][0]); //0
         System.out.println(arr[0][1]); //0
    }
}

格式1内存图解


image.png

image.png

public static void main(String[] args) {
    // write your code here
//        int[] array = new int[10];
//        for(int i = 0; i< array.length;i++)
//        {
//            array[i] = i+1;
//        }
//
//        for(int i = 0; i< array.length;i++)
//        {
//            System.out.println(array[i]);
//        }
        int[][] array = new int[3][2];
        //任何一个二维数组都可以看成一个一维数组(数组中每一个元素又是一个数组)
//        System.out.println(array.length);//看成的一维数组的长度
//        System.out.println(array[0].length);
        array[0][0] = 1;
        array[0][1] = 2;
        array[1][0] = 3;
        array[1][1] = 4;
        array[2][0] = 5;
        array[2][1] = 6;
        for(int i = 0; i<array.length;i++)
        {
            for(int j = 0; j< array[i].length; j++)
            {
                System.out.println(array[i][j]);
            }
        }
    }

二维数组格式2

/*
    格式2:
        数据类型[][] 数组名 = new 数据类型[m][];
        m:表示这个二维数组有多少个一维数组。
        列数没有给出,可以动态的给。这一次是一个变化的列数。
*/
class Array2Demo2 {
    public static void main(String[] args) {
        //定义数组
        int[][] arr = new int[3][];
        System.out.println(arr);    //[[I@175078b
        System.out.println(arr[0]); //null
        System.out.println(arr[1]); //null
        System.out.println(arr[2]); //null
        //动态的为每一个一维数组分配空间
        arr[0] = new int[2];
        arr[1] = new int[3];
        arr[2] = new int[1];
        System.out.println(arr[0]); //[I@42552c
        System.out.println(arr[1]); //[I@e5bbd6
        System.out.println(arr[2]); //[I@8ee016
        System.out.println(arr[0][0]); //0
        System.out.println(arr[0][1]); //0
        //ArrayIndexOutOfBoundsException
        //System.out.println(arr[0][2]); //错误
        arr[1][0] = 100;
        arr[1][2] = 200;
    }
}

二维数组格式2  内存图解

image.png


image.png

二维数组格式3

/*
    格式3:
        基本格式:
            数据类型[][] 数组名 = new 数据类型[][]{{元素1,元素2...},{元素1,元素2...},{元素1,元素2...}};
        简化版格式:
            数据类型[][] 数组名 = {{元素1,元素2...},{元素1,元素2...},{元素1,元素2...}};
        举例:
            int[][] arr = {{1,2,3},{4,5,6},{7,8,9}};
            int[][] arr = {{1,2,3},{4,5},{6}};
*/
class Array2Demo3 {
    public static void main(String[] args) {
        //定义数组
        int[][] arr = {{1,2,3},{4,5},{6}};
        System.out.println(arr);
        System.out.println(arr[0]);
        System.out.println(arr[1]);
        System.out.println(arr[2]);
        System.out.println(arr[0][0]); //1
        System.out.println(arr[1][0]); //4
        System.out.println(arr[2][0]); //6
        System.out.println(arr[0][1]); //2
        System.out.println(arr[1][1]); //5
        //越界
        System.out.println(arr[2][1]); //错误
    }
}

二维数组格式3  内存图解


image.png

image.png

遍历二维数组

/*
    需求:二维数组遍历
    外循环控制的是二维数组的长度,其实就是一维数组的个数。
    内循环控制的是一维数组的长度。
*/
class Array2Test {
    public static void main(String[] args) {
        //定义一个二维数组
        int[][] arr = {{1,2,3},{4,5,6},{7,8,9}};
        //用方法改进
        //调用方法
        printArray2(arr);
    }    
    /*
        需求:遍历二维数组
        两个明确:
            返回值类型:void
            参数列表:int[][] arr
    */
    public static void printArray2(int[][] arr) {
        for(int x=0; x<arr.length; x++) {
            for(int y=0; y<arr[x].length; y++) {
                System.out.print(arr[x][y]+" ");
            }
            System.out.println();
        }
    }
}

二维数组求和

/*
    公司年销售额求和
    某公司按照季度和月份统计的数据如下:单位(万元)
    第一季度:22,66,44
    第二季度:77,33,88
    第三季度:25,45,65
    第四季度:11,66,99
    分析:
        A:把题目的数据用二维数组来表示
            int[][] arr = {{22,66,44},{77,33,88},{25,45,65},{11,66,99}};
        B:如何求和呢?
            求和其实就是获取到每一个元素,然后累加即可。
        C:定义一个求和变量sum,初始化值是0。
        D:通过遍历就可以得到每一个二维数组的元素。
        E:把元素累加即可。
        F:最后输出sum,就是结果。
*/
class Array2Test2 {
    public static void main(String[] args) {
        //把题目的数据用二维数组来表示
        int[][] arr = {{22,66,44},{77,33,88},{25,45,65},{11,66,99}};
        //定义一个求和变量sum,初始化值是0。
        int sum = 0;
        //通过遍历就可以得到每一个二维数组的元素。
        for(int x=0; x<arr.length; x++) {
            for(int y=0; y<arr[x].length; y++) {
                //把元素累加即可。
                sum += arr[x][y];
            }
        }
        //最后输出sum,就是结果。
        System.out.println("一年的销售额为:"+sum+"万元");
    }
}

二维数组树出杨辉三角:打印杨辉三角形(行数可以键盘录入)

image.png


image.png

/*
    需求:打印杨辉三角形(行数可以键盘录入)
    1 1    
2 1
3 3 1
4 6 4 1 
5 10 10 5 1
    分析:看这种图像的规律
        A:任何一行的第一列和最后一列都是1
        B:从第三行开始,每一个数据是它上一行的前一列和它上一行的本列之和。
    步骤:
        A:首先定义一个二维数组。行数如果是n,我们把列数也先定义为n。
          这个n的数据来自于键盘录入。
        B:给这个二维数组任何一行的第一列和最后一列赋值为1
        C:按照规律给其他元素赋值
            从第三行开始,每一个数据是它上一行的前一列和它上一行的本列之和。
        D:遍历这个二维数组。
*/
import java.util.Scanner;
class Array2Test3 {
    public static void main(String[] args) {
        //创建键盘录入对象
        Scanner sc = new Scanner(System.in);
        //这个n的数据来自于键盘录入。
        System.out.println("请输入一个数据:");
        int n = sc.nextInt();
        //定义二维数组
        int[][] arr = new int[n][n];
        //给这个二维数组任何一行的第一列和最后一列赋值为1
        for(int x=0; x<arr.length; x++) {
            arr[x][0] = 1; //任何一行第1列
            arr[x][x] = 1; //任何一行的最后1列
        }
        //按照规律给其他元素赋值
        //从第三行开始,每一个数据是它上一行的前一列和它上一行的本列之和。
        for(int x=2; x<arr.length; x++) {
            //这里如果y<=x是有个小问题的,就是最后一列的问题
            //所以这里要减去1
            //并且y也应该从1开始,因为第一列也是有值了
            for(int y=1; y<=x-1; y++) {
                //每一个数据是它上一行的前一列和它上一行的本列之和。
                arr[x][y] = arr[x-1][y-1] + arr[x-1][y];
            }
        }
        //这个时候,要注意了,内循环的变化必须和曾经讲过的九九乘法表类似
        for(int x=0; x<arr.length; x++) {
            for(int y=0; y<=x; y++) {
                System.out.print(arr[x][y]+"\t");
            }
            System.out.println();
        }
    }
}


目录
相关文章
|
29天前
|
存储 缓存 安全
Java内存模型深度解析:从理论到实践####
【10月更文挑战第21天】 本文深入探讨了Java内存模型(JMM)的核心概念与底层机制,通过剖析其设计原理、内存可见性问题及其解决方案,结合具体代码示例,帮助读者构建对JMM的全面理解。不同于传统的摘要概述,我们将直接以故事化手法引入,让读者在轻松的情境中领略JMM的精髓。 ####
37 6
|
20天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
21 0
|
1月前
|
存储 Java 编译器
Java内存模型(JMM)深度解析####
本文深入探讨了Java内存模型(JMM)的工作原理,旨在帮助开发者理解多线程环境下并发编程的挑战与解决方案。通过剖析JVM如何管理线程间的数据可见性、原子性和有序性问题,本文将揭示synchronized关键字背后的机制,并介绍volatile关键字和final关键字在保证变量同步与不可变性方面的作用。同时,文章还将讨论现代Java并发工具类如java.util.concurrent包中的核心组件,以及它们如何简化高效并发程序的设计。无论你是初学者还是有经验的开发者,本文都将为你提供宝贵的见解,助你在Java并发编程领域更进一步。 ####
|
1月前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
23天前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
37 8
|
20天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
24天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
49 5
|
22天前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
22天前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
27天前
|
算法 Java 开发者
Java内存管理与垃圾回收机制深度剖析####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,特别是其垃圾回收机制的工作原理、算法及实践优化策略。不同于传统的摘要概述,本文将以一个虚拟的“城市环卫系统”为比喻,生动形象地揭示Java内存管理的奥秘,旨在帮助开发者更好地理解并调优Java应用的性能。 ####