ICASSP 2022 | 89.46%检出率,网易云信音频实验室提出全球首个AI啸叫检测方案(2)

简介: ICASSP 2022 | 89.46%检出率,网易云信音频实验室提出全球首个AI啸叫检测方案

数据集
由于问题的新颖性,目前业界没有 RTC 场景下的开源啸叫数据集。因此该研究基于真实场景,利用网易云信音频实验室等资源,进行了大量的数据采集,完成云信啸叫数据集的构造,总共包括 52h+,并进行了精细的标注。

采集数据主要涉及信号、设备、环境、场景等几个方面。

  • 信号方面,采集的信号为设备麦克风采集并转换传给 3A 算法的输入信号,播放的信号包括语音、音乐、噪声、环境声以及一些特殊的声音,如铃声、鸟叫声、口哨声等。
  • 设备方面,设备频响的多样性以及适配设备 3A 算法的多样性,包括不同性能、样式、处理程度不同的 3A 算法的机型进行覆盖。
  • 环境方面,覆盖安静、嘈杂等不同信噪比、混响的环境。
  • 场景方面,场景主要为啸叫与不啸叫的场景,包括单设备入会、多设备入会,设备处于不同的物理位置等等。


模型与优化

RTC 场景下,需要关注的 3 个难点:
1)在保证检出率的前提下,误检率要尽可能低;2)由于啸叫的特征与设备、环境等多因素相关,因此模型需要较好的泛化能力;3)实时场景下,模型需要尽可能小。
本文针对上述 3 个问题,参考音频事件检测的相关思路和方法,进行了优化。
输入特征
由于啸叫频率往往处于 8kHz 以内,该研究将所有数据重采样到 16kHz,并设定帧移为 40ms,序列长度设置为 1.28s,然后对数据求 60 维的 log 梅尔谱,并对训练集 + 验证集的数据进行了归一化处理。
模型结构


  • input: 模型的输入为 32 帧的 log 梅尔谱,即(1*32*60);同时经过 norm 操作;
  • stem block: 包含 3 层 CNN 结构,每层分别包含 16,32,32 个卷积核,卷积核大小为(3,3)、stride 为(1,1),每个 CNN 之后通过 batchnorm 层,ReLu 激活函数,以及 average pool 池化层,池化层的参数分别为(1,5),(1,4),(1,3),之后再加上一层 dropout 防止过拟合;这样通过 CNN 结构进行特征学习,并且将频率维度融合到 channel 维度;
  • Recurrent blovk: 2 层双向 LSTM,通道数为 32,通过 RNN 结构学习时间上的特征(temporal context information);
  • FC block: 通过一层线性层过渡,通道数为 32,同样添加了 dropout 层;
  • Attention block:通过一层线性层达到分类的目的,通道数为 1,激活函数为 sigmoid;
  • output: 模型的输出为 32 帧,即帧级别的输出。


最终转换为 binary 的结果需要对 sigmoid 的输出进行门限判决,门限默认设为 0.5。
损失函数
针对误检率的问题,该研究使用了 weighted binary cross entropy loss。


模型压缩
为了进一步满足 RTC 实时性要求,该研究使用了模型压缩技术,具体使用了基于L1 filter 的剪枝方法以及基于 QAT 的量化方法,这进一步减小了模型的大小和运算量。
评价指标
针对 RTC 场景,该研究主要使用了检出率 TP 以及误检率 FP 最为评价指标,同时计算了 F1 score 作为参考。

  • TP(true positive):检出率,实际为真,判断为真, 1->1
  • TN(true negtive);实际为假,判断为假, 0->0
  • FP(false positive):误检率,实际为假,判断为真, 0→1
  • FN(false negtive): 漏检率,实际为真,判断为假, 1→0
  • P(precision):精准度,TP / (TP + FP),即判断为真的中,正确的数目
  • R(recall):召回率,TP / (TP + FN),即实际为真的中,检出了多少
  • F1 socre:2 * P * R / (P + R),即 P 和 R 的几何平均值


实验及结果
本文主要进行了 4 个实验对比。
1. 模型对比
该研究对比了 4 个方法,包括基于信号特征的传统信号处理检测方法;基于 CNN 的神经网络方法;基于 RCRNN 的神经网络方法;以及本文提出的基于 CRNN 的神经网络方法。
1) 基于信号特征的传统信号处理检测方法:结合了 PTPR/PAPR/PNPR/IPMP 四个特征,以及使用了 VAD 作为辅助;2) 基于 CNN 的神经网络方法: 主体结构使用了 3 层 CNN,相比于 CRNN 的方案,去除了 RNN 层;3) 基于 RCRNN 的神经网络方法:基于 CRNN 结构,增加了残差卷积结构,并且使用了基于时空卷积的 attention 模块,详细内容可以查看论文参考。
在测试集中,本文方法达到 89.46% 帧级别的检出率,以及 0.40% 帧级别的误检率。


从实验结果得出,基于神经网络的方法表现明显优于传统的信号处理方法;RNN 结构的使用可以明显降低模型的误检率;尽管更复杂的模型在声音事件检测任务中提供更好的表现,但是更复杂的模型并没有更多的提升其在啸叫检测任务中的表现。
本文针对误检率的分析发现,多数的误检信号集中在具有和啸叫类似特征和听感的信号,例如鸟叫声、口哨声。
2. 模型优化项对比
该研究对比了数据增强(变速变调、加噪、谱增强等方法)、参数正则化、dropout 层等优化项的表现。
1)使用数据增强时,该研究在 time strectch/pitch shift/frame shift/add gaussian noise/time mask/frequency mask 等 6 种方法中,随机选取若干种进行数据扩充,并重复 4 次,这样可以获得 5 倍的实验数据;2) 该研究尝试了在训练时不加入参数正则化的操作;3) 该研究尝试了在模型中各层 (CNN/FC) 不加入 dropout 层。


从实验结果得出,数据增强可以有效地提升检出率和 F1 score,尤其是 F1 score,作为声音时间检测的一项指标,数据增强会有效提升任务表现,但是对于啸叫检测任务而言,由于误检率也明显提升,对于实际应用并没有明显的帮助;去除了参数正则化和 dropout 层并没有导致所谓的过拟合现象,在测试集中仍然有较好的表现,尤其是检出率和 F1 score,但是同样,会进一步提升误检率,对于啸叫检测的特定任务,并没有表现出更好的效果。
总而言之,该研究会更加关注误检率的表现。
3. weighted BCE loss 对比
此实验验证了不同α系数对检出率和误检率的影响。可以看出,α小于 1 的取值,会进一步降低误检率,更适用于本文的应用场景;而α大于 1 的取值,可以有效地提升检出率。对于相关任务,可以针对检出率或者误检率的要求,有借鉴意义。


4. 模型压缩
最后,实验使用了基于 L1 filter 的剪枝方法以及基于 QAT 的量化方法,模型大小从 121kB 压缩到 39kB,检出率从 89.46% 略微降低到 87.84%,误检率从 0.40% 略微增加到 0.49%。
在模型速度上,在华为 X10 手机上进行实验,每 10ms 数据的最大处理时间约 62.5us。

总结
本文中,从啸叫产生的场景、产生的原因及特征进行了详细介绍,并且分析了传统的基于信号特征的解决方案,及其在 RTC 场景中的不足,最后介绍了基于 AI 的啸叫检测方案,论文的主要贡献在于将啸叫问题和神经网络进行了深度的结合,在效果和性能表现上都达到了较为理想的状态。

未来展望
啸叫检测的结果将会为后续的啸叫抑制提供有力的支持,从应用角度来看,可以利用检测的结构通知用户,或者进行静音、降低音量操作,当然,更加理想的方式是能够将啸叫信号进行消除,同时最大程度上保留有用的信号。这一点有一点类似降噪的思路,所以该研究后续也会深度结合 AI 啸叫检测和 AI 噪声抑制,进一步提升用户的体验。

相关文章
|
4月前
|
人工智能 缓存 调度
技术改变AI发展:RDMA能优化吗?GDR性能提升方案(GPU底层技术系列二)
随着人工智能(AI)的迅速发展,越来越多的应用需要巨大的GPU计算资源。GPUDirect RDMA 是 Kepler 级 GPU 和 CUDA 5.0 中引入的一项技术,可以让使用pcie标准的gpu和第三方设备进行直接的数据交换,而不涉及CPU。
134622 6
|
7月前
|
人工智能 自然语言处理 异构计算
Stability AI发布基于稳定扩散的音频生成模型Stable Audio
近日Stability AI推出了一款名为Stable Audio的尖端生成模型,该模型可以根据用户提供的文本提示来创建音乐。
108 1
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
【AI 现况分析】AI大模型在欺诈检测中具体的应用
【1月更文挑战第26天】【AI 现况分析】AI大模型在欺诈检测中具体的应用
|
3天前
|
人工智能 自然语言处理 API
[AI Microsoft VASA-1] 以音频驱动的逼真实时生成的对话脸部
微软VASA-1项目通过单张肖像照片和语音音频,生成具有精确唇音同步、栩栩如生的面部行为和自然头部运动的超逼真对话脸部视频。该技术展现了在实时效率、分布外泛化和解耦能力方面的显著优势,并强调了负责任的AI开发和应用的重要性。
[AI Microsoft VASA-1] 以音频驱动的逼真实时生成的对话脸部
|
10天前
|
人工智能 数据安全/隐私保护
如何实现AI检测与反检测原理
AI检测器用于识别AI生成的文本,如ChatGPT,通过困惑度和爆发性指标评估文本。低困惑度和低爆发性可能指示AI创作。OpenAI正研发AI文本水印系统,但尚处早期阶段。现有检测器对长文本较准确,但非100%可靠,最高准确率约84%。工具如AIUNDETECT和AI Humanizer提供AI检测解决方案,适用于学生、研究人员和内容创作者。
|
13天前
|
人工智能 编解码 安全
揭秘AI幻觉:GPT-4V存在视觉编码漏洞,清华联合NUS提出LLaVA-UHD
【4月更文挑战第14天】清华大学与新加坡国立大学团队针对大型多模态模型(LMMs)在处理高分辨率图像时的局限,提出新模型LLaVA-UHD。该模型通过图像模块化、压缩和空间模式组织策略,有效提升了处理任意比例和高分辨率图像的能力。实验显示,LLaVA-UHD在9个基准测试中超越现有模型,且在TextVQA任务上准确率提升6.4%,同时训练时间更短。然而,模型训练成本高、泛化能力待优化是未来需解决的问题。
26 8
揭秘AI幻觉:GPT-4V存在视觉编码漏洞,清华联合NUS提出LLaVA-UHD
|
5月前
|
机器学习/深度学习 存储 人工智能
AI歌姬,C位出道,基于PaddleHub/Diffsinger实现音频歌声合成操作(Python3.10)
懂乐理的音乐专业人士可以通过写乐谱并通过乐器演奏来展示他们的音乐创意和构思,但不识谱的素人如果也想跨界玩儿音乐,那么门槛儿就有点高了。但随着人工智能技术的快速迭代,现在任何一个人都可以成为“创作型歌手”,即自主创作并且让AI进行演唱,极大地降低了音乐制作的门槛。 本次我们基于PaddleHub和Diffsinger实现音频歌声合成操作,魔改歌曲《学猫叫》。
AI歌姬,C位出道,基于PaddleHub/Diffsinger实现音频歌声合成操作(Python3.10)
|
1月前
|
机器学习/深度学习 人工智能 算法
使用纹理对比度检测检测AI生成的图像
在本篇文章中我们将介绍如何开发一个深度学习模型来检测人工智能生成的图像
20 0
|
2月前
|
机器学习/深度学习 人工智能 关系型数据库
南京大学提出量化特征蒸馏方法QFD | 完美结合量化与蒸馏,让AI落地更进一步!!!
南京大学提出量化特征蒸馏方法QFD | 完美结合量化与蒸馏,让AI落地更进一步!!!
146 0
|
6月前
|
弹性计算 人工智能 自然语言处理
GPU实验室-通过GPU云服务器生成AI视频
自多态模型GPT-4发布后,AIGC(AI Generated Content,AI生成内容)时代正扑面而来,从单一的文字文本,演化到更丰富的图片、视频、音频、3D模型等。本文基于阿里云GPU服务器和文本生成视频模型,采用Unet3D结构,通过从纯高斯噪声视频中,迭代去噪的过程,实现文本生成视频功能。