前言
PCA(主成分分析)是十大经典机器学习算法之一。PCA是Pearson在1901年提出的,后来由Hotelling在1933年加以发展提出的一种多变量的统计方法。
PCA算法介绍
PCA(principal components analysis)即主成分分析技术,又称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。
PCA算法优点:
1、使得数据集更易使用;
2、降低算法的计算开销;
3、去除噪声;
4、使得结果容易理解;
5、完全无参数限制。
PCA算法缺点:
1、主成分解释其含义往往具有一定的模糊性,不如原始样本完整
2、贡献率小的主成分往往可能含有对样本差异的重要信息,也就是可能对于区分样本的类别(标签)更有用
3、特征值矩阵的正交向量空间是否唯一有待讨论
4、无监督学习
PCA算法应用:
PCA算法已经被广泛的应用于高维数据集的探索与可视化,还可以用于数据压缩,数据预处理等领域。在机器学习当中应用很广,比如图像,语音,通信的分析处理。PCA算法最主要的用途在于“降维”,去除掉数据的一些冗余信息和噪声,使数据变得更加简单高效,提高其他机器学习任务的计算效率。
PCA算法求解步骤:
1. 去除平均值
2. 计算协方差矩阵
3. 计算协方差矩阵的特征值和特征向量
4. 将特征值排序
5. 保留前N个最大的特征值对应的特征向量
6. 将原始特征转换到上面得到的N个特征向量构建的新空间中(最后两步,实现了特征压缩)
源码实现:
1.导包
import numpy as np
2.初始化PCA类
class PCA: def __init__(self, n_components): """初始化PCA""" assert n_components >= 1, "n_components must be valid" self.n_components = n_components self.components_ = None
3.训练方法
def fit(self, X, eta=0.01, n_iters=1e4): """获得数据集X的前n个主成分""" assert self.n_components <= X.shape[1], \ "n_components must not be greater than the feature number of X" def demean(X): return X - np.mean(X, axis=0) def f(w, X): return np.sum((X.dot(w) ** 2)) / len(X) def df(w, X): return X.T.dot(X.dot(w)) * 2. / len(X) def direction(w): return w / np.linalg.norm(w) def first_component(X, initial_w, eta=0.01, n_iters=1e4, epsilon=1e-8): w = direction(initial_w) cur_iter = 0 while cur_iter < n_iters: gradient = df(w, X) last_w = w w = w + eta * gradient w = direction(w) if (abs(f(w, X) - f(last_w, X)) < epsilon): break cur_iter += 1 return w X_pca = demean(X) self.components_ = np.empty(shape=(self.n_components, X.shape[1])) for i in range(self.n_components): initial_w = np.random.random(X_pca.shape[1]) w = first_component(X_pca, initial_w, eta, n_iters) self.components_[i, :] = w X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w return self
转换
def transform(self, X): """将给定的X,映射到各个主成分分量中""" assert X.shape[1] == self.components_.shape[1] return X.dot(self.components_.T)
反转转换
def inverse_transform(self, X): """将给定的X,反向映射回原来的特征空间""" assert X.shape[1] == self.components_.shape[0] return X.dot(self.components_)
完整代码
import numpy as np class PCA: def __init__(self, n_components): """初始化PCA""" assert n_components >= 1, "n_components must be valid" self.n_components = n_components self.components_ = None def fit(self, X, eta=0.01, n_iters=1e4): """获得数据集X的前n个主成分""" assert self.n_components <= X.shape[1], \ "n_components must not be greater than the feature number of X" def demean(X): return X - np.mean(X, axis=0) def f(w, X): return np.sum((X.dot(w) ** 2)) / len(X) def df(w, X): return X.T.dot(X.dot(w)) * 2. / len(X) def direction(w): return w / np.linalg.norm(w) def first_component(X, initial_w, eta=0.01, n_iters=1e4, epsilon=1e-8): w = direction(initial_w) cur_iter = 0 while cur_iter < n_iters: gradient = df(w, X) last_w = w w = w + eta * gradient w = direction(w) if (abs(f(w, X) - f(last_w, X)) < epsilon): break cur_iter += 1 return w X_pca = demean(X) self.components_ = np.empty(shape=(self.n_components, X.shape[1])) for i in range(self.n_components): initial_w = np.random.random(X_pca.shape[1]) w = first_component(X_pca, initial_w, eta, n_iters) self.components_[i, :] = w X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w return self def transform(self, X): """将给定的X,映射到各个主成分分量中""" assert X.shape[1] == self.components_.shape[1] return X.dot(self.components_.T) def inverse_transform(self, X): """将给定的X,反向映射回原来的特征空间""" assert X.shape[1] == self.components_.shape[0] return X.dot(self.components_) def __repr__(self): return "PCA(n_components=%d)" % self.n_components
结语
PCA是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于识别和提取数据的主要特征分量,通过将数据坐标轴旋转到数据角度上那些最重要的方向(方差最大);然后通过特征值分析,确定出需要保留的主成分个数,舍弃其他非主成分,从而实现数据的降维。降维使数据变得更加简单高效,从而实现提升数据处理速度的目的,节省大量的时间和成本。降维也成为了应用非常广泛的数据预处理方法。PCA算法已经被广泛的应用于高维数据集的探索与可视化,还可以用于数据压缩,数据预处理,图像,语音,通信的分析处理等领域。