CVPR 2022 Oral | 人大高瓴人工智能学院让AI学会了听音乐,还开源9288个视频数据集

简介: CVPR 2022 Oral | 人大高瓴人工智能学院让AI学会了听音乐,还开源9288个视频数据集

中国人民大学高瓴人工智能学院 GeWu 实验室提出了一种动态视音场景下的空间 - 时序问答模型,让 AI 能像人一样观看和聆听乐器演奏,并对给定的视音问题做出跨模态时空推理。论文已被 CVPR2022 接收并选为 Oral Presentation。


你知道 AI 可以自己欣赏音乐会吗?而且 AI 可以知道演奏场景中每一个乐器的演奏状态,这是不是很神奇?对人类而言,欣赏美妙的音乐会是一件很享受的事情,但对于机器来说,如何将优美的旋律和激昂的演奏画面珠联璧合来提升欣赏体验却颇有挑战。

最近,中国人民大学高瓴人工智能学院 GeWu 实验室就针对这一问题提出了一种新的框架,让 AI 能像人一样观看和聆听乐器演奏,并对给定的视音问题做出跨模态时空推理。

目前这一成果已被 CVPR2022 接收并选为 Oral Presentation,相关数据集和代码已经开源。



接下来让我们一起来看一下这个有趣的工作!

1. 引言

我们在日常生活中被视觉和声音信息所包围,这两种信息的结合利用提高了我们对场景的感知和理解能力。想象一下,当我们身处在一场音乐会中时,同时观看乐器演奏动作和聆听音乐的旋律可以很好地帮我们享受演出。受此启发,如何让机器整合多模态信息,尤其是视觉和声音等自然模态,以达到与人类相当的场景感知和理解能力,是一个有趣且有价值的课题。因此,该研究专注于视听问答(Audio-Visual Question Answering, AVQA)任务,旨在回答有关不同视觉对象、声音及其在视频中的关联的问题。显然,必须对视听场景进行全面的多模态理解和时空推理才能做出正确的回答。

近年来,研究人员在声音对象感知、音频场景分析、视听场景解析和内容描述等方面取得了显著进展。尽管这些方法能将视觉对象与声音关联,但它们中的大多数在复杂视听场景下的跨模态推理能力仍然有限。相比之下,人类可以充分利用多模态场景中的上下文内容和时间信息来解决复杂的场景推理任务,如视听问答任务等。现有的视觉问答(VQA)和声音问答(AQA)方法等往往只关注单一模态,从而不能很好的在真实的视音场景中进行复杂的推理任务。

如下图所示的单簧管双重奏场景,当回答 “哪个单簧管先发声?” 的问题时,需要在视听场景中先定位出发声的单簧管,并在时序维度上重点聚焦于哪个单簧管先发出声音。要正确回答这个问题,本质上需要有效地对视听场景理解和时空推理。

图 1 AVQA 任务问题样例展示

对于上面这个例子,若我们仅考虑基于视觉模态的 VQA 模型则很难对问题中涉及的声音信息进行处理,相反,若我们只考虑基于声音模态的 AQA 模型,同样难以对问题中涉及的空间位置信息进行处理。但是,我们可以看到同时使用听觉和视觉信息可以很容易的对场景进行理解并正确的回答上述问题。

2. 数据集

为了更好的探索视听场景理解和时空推理的问题,该研究构建了一个专注于问答任务的大规模的视听数据集(Spatial-Temporal Music AVQA, MUSIC-AVQA)。我们知道高质量的数据集对于视音问答任务的研究具有相当大的价值,因此,考虑到乐器演奏是一个典型的视音多模态场景,并由丰富的视听成分及其交互组成,非常适合用于探索视听场景理解和推理任务。因此该研究从 YouTube 上收集了大量用户上传的乐器演奏视频,构建数据集中的视频包括了独奏、重奏的合奏等多种演奏形式。具体来说,该研究一共选取了 22 种不同的乐器(如吉他、钢琴、二胡、唢呐等),设计了九种问题模板并涵盖了声音、视觉和视音三种不同的模态场景类型。

表 1 MUCIS-AVQA 数据集与其他 QA 数据集多维对比

如表 1 所示,该研究发布的 MUSIC-AVQA 数据集具有以下优势:1)MUSIC-AVQA 数据集涵盖大量的声音问题、视觉问题和视听问题的问答对,比其他问答类数据集更全面丰富。对于大多数问答任务数据集(ActivityNet-QA, TVQA 等)来说,仅包含了视觉问题,难以探索视听相关的研究。虽然现有的 AVQA 数据集(AVSD, Pano-AVQA 等)也提供了视听问答对,但它们更专注于相对简单的问题(Existential 或 Location),只需要空间推理即可做出回答。2)MUSIC-AVQA 数据集由包含丰富视听成分的乐器演奏场景组成,有助于更好地研究视听交互场景理解和推理,并可以在一定程度上避免场景中的噪声问题。大多数公开问答类数据集(ActivityNet-QA, AVSD 等)中的声音信息通常与其视觉对象不匹配,会产生严重的噪声(如背景音乐),这使得它们难以探索不同模态之间的关联。此外,TVQA 数据集虽然包含视觉和声音模态,但其声音是由人类说话声组成的,在其问答对构建过程中也只使用了相应的字幕信息,并不是真正的视音关联场景。

最终数据集包含了 9,288 个视频并包含了 22 种乐器,其总时长超过 150 小时。并且以众包的形式形成了 45,867 个问答对,平均每个视频约 5 个问答对,这些问答对涵盖了不同模态下的 9 类问题类型以及 33 个不同的问题模板。丰富而多样复杂的数据集对 AVQA 任务的研究具有相当大的价值和意义。

图 2 MUSIC-AVQA 数据集多维统计分析

3. 模型方法

为了解决上述 AVQA 任务,该研究分别从空间和时序感知的角度出发,提出了一种动态视音场景下的空间 - 时序问答模型(如下图所示)。

  • 首先,声音及其视觉源的位置反映了视听模态之间的空间关联,这有助于将复杂的场景分解为具体的视听关联。因此该研究提出了一个基于注意力机制的声源定位的空间模块来模拟这种跨模态的关联。
  • 其次,由于视听场景随时间动态变化,因此捕捉和突出与问题密切相关的关键时间戳至关重要。因此,该研究提出了使用问题特征作为查询的时间基础模块来聚焦关键时间片段,以有效地编码问题感知音频和视觉的嵌入。
  • 最后,融合上述空间感知和时间感知的视听特征,得到问答的联合表示,以预测视频关联问题的答案。


图 3 动态视音场景的空间 - 时序问答模型
4. 实验结果

如表 2 所示,引入 Audio 和 Visual 模态信息都有助于模型性能的提升。此外,能明显看到当结合声音和视觉模态时,AV+Q 模型的性能比 A+Q 和 V+Q 模型要好得多,这表明多感官感知有助于提升问答任务的性能。我们也能看到视音空间关联模块和时序关联模块都能够很明显的提升模型的性能,从而更好地对场景进行理解。

表 2 不同模态消融实验表

表 3 展示了一些最近的 QA 方法在 MUSIC-AVQA 数据集上的结果。结果首先表明所有的 AVQA 方法都要好于 VQA、AQA 和 VideoQA 方法,这说明多模态感知可以有益于 AVQA 任务。其次该研究所用方法在大多数视听问题上取得了相当大的进步,尤其是对于需要空间和时序推理的视听问题更为明显(如 Temporal 和 Localization 等)。

表 3 与其他 QA 类方法对比

为了进一步说明所提模型的有效性和可解释性,该研究进行了一些可视化展示。其中热力图表示声源的位置,热力图下方的表格表示时序上的注意力分数。从可视化结果可以明显看出所提的模型在多模态视听场景中具有很好的理解和推理能力。

图 4 可视化结果
5. 总述

总体来说,本文探索了如何回答有关不同视觉对象、声音及其在视频中的关联的问题,从而对动态复杂的视音场景进行细粒度理解和推理。作者团队构建了一个包含 45,867 个不同视听模态和多种问题类型问答对的大规模 MUSIC-AVQA 数据集,以及提出了一个简单高效的视音时序 - 空间模型来很好的解决 AVQA 问题。该研究相信提出的 MUSIC-AVQA 数据集可以成为评估视听场景细粒度理解和时空推理的基准平台,同时也认为这项工作是探索视听推理的开篇之作,为该领域开创了一个良好的开端,并借此希望能够激励更多的研究者同我们一道去探索这一领域。

团队主要来自人大 AI 学院

本项研究由中国人民大学高瓴人工智能学院主导,与美国罗彻斯特大学合作完成,通讯作者为 GeWu 实验室胡迪助理教授,主要内容由 GeWu 实验室博士生李光耀负责。

GeWu 实验室目前具体的研究方向主要包括多模态场景理解、多模态学习机制和跨模态交互与生成等,最近半年实验室同学已发表多篇高质量文章,如 TPAMI(人工智能领域影响因子最高的期刊,IF=17.861)和多篇 CVPR(均为 Oral)。

PS:研究人员发现常用的多模态模型存在欠优化的单模态表征,这是由某些场景中另一种主导模态导致的。为此他们设计了 OGM-GE 方法,通过监控不同模态对学习目标的贡献差异来自适应地调制每种模态的优化,从而缓解了这种优化上的不平衡。这篇工作也被 CVPR2022 接收为 Oral Presentation,具体内容将在后续发布中解说。

此外,GeWu 实验室非常欢迎对上述研究方向感兴趣的同学加入(本、硕、博和访问学生),详情请进一步查看实验室招生宣传 (https://zhuanlan.zhihu.com/p/496452639)。

相关文章
|
11天前
|
机器学习/深度学习 人工智能 UED
OOTDiffusion:开源AI虚拟试衣工具,智能适配性别和体型自动调整衣物
OOTDiffusion是一款开源的AI虚拟试衣工具,能够智能适配不同性别和体型,自动调整衣物尺寸和形状,生成自然贴合的试穿效果。该工具支持半身和全身试穿模式,操作简单,适合服装电商、时尚行业从业者及AI试穿技术爱好者使用。
96 27
OOTDiffusion:开源AI虚拟试衣工具,智能适配性别和体型自动调整衣物
|
1天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
30 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
4天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
38 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
9天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
93 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
2天前
|
机器学习/深度学习 人工智能 算法
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
X-AnyLabeling是一款集成了多种深度学习算法的图像标注工具,支持图像和视频的多样化标注样式,适用于多种AI训练场景。本文将详细介绍X-AnyLabeling的功能、技术原理以及如何运行该工具。
22 2
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
|
10天前
|
人工智能 安全 PyTorch
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。
44 10
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
|
10天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
60 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
9天前
|
数据采集 人工智能 编解码
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
书生·万象InternVL 2.5是由上海AI实验室OpenGVLab团队推出的开源多模态大语言模型系列。该模型在多模态理解基准(MMMU)上表现优异,超越了许多商业模型,适用于图像和视频分析、视觉问答、文档理解和多语言处理等多个领域。
56 7
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
MMAudio 是一个基于多模态联合训练的高质量 AI 音频合成项目,能够根据视频内容或文本描述生成同步的音频。该项目适用于影视制作、游戏开发、虚拟现实等多种场景,提升用户体验。
53 7
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
MetaGPT开源SELA,用AI设计AI,效果超越OpenAI使用的AIDE
MetaGPT团队开源了Tree-Search Enhanced LLM Agents(SELA)系统,通过蒙特卡罗树搜索(MCTS)优化AutoML过程,显著提升了机器学习模型的构建效率和性能。SELA在20个数据集上的实验结果表明,其性能优于传统AutoML方法和基于LLM的代理,为AutoML领域带来了新的突破。
18 4
下一篇
DataWorks