几个GPU工作数天≈10人团队工作大半年,英伟达用AI高效设计芯片

简介: 几个GPU工作数天≈10人团队工作大半年,英伟达用AI高效设计芯片

「同样是移植一个新的技术库,如果使用人力,我们需要一个 10 人左右的团队工作大半年,但借助 AI,我们只需要花几天时间运行几个 GPU 就能完成大部分工作。」


近几年,芯片设计成为 AI 落地的一个重要领域,谷歌、英伟达、三星、西门子等多家公司都已经计划或开始尝试在芯片设计中使用 AI。其中,同时在芯片设计和 AI 领域深耕多年的英伟达有着得天独厚的优势。在前段时间的 GTC 大会上,英伟达首席科学家、计算机架构大师 Bill Dally 介绍了他们在这方面取得的进展以及所使用的 AI 工具。

以下是 Bill Dally 在 GTC 大会上的介绍原文。


预测电压降


作为 AI 专家,我们自然希望利用 AI 来设计更好的芯片。我们有几种不同的方法:一是利用现有的计算机辅助设计工具(并融入 AI),例如我们有一个可以绘制 GPU 中用电位置的地图,它还可以预测电压网下降多少——电流乘以电阻压降,被称为 IR 压降。在传统的 CAD 工具上运行该流程需要三个小时。


这是一个迭代的过程,所以进行起来有点麻烦。我们想训练一个 AI 模型来处理相同的数据。我们做了一系列的设计来进行这样的操作,然后就可以输入电源图了,最后推断时间只需三秒。当然,如果算上特征提取的时间,我们要花 18 分钟,很快就能得到结果。


我们没有使用卷积神经网络,而是用到了图神经网络,这是为了估计电路中不同节点的开关频率。同样,我们能够比传统工具更快地获得非常准确的功率估计,并且只需很少的时间。




预测寄生参数(parasitics)


我特别喜欢的一项工作是用图神经网络预测寄生参数。之前这项工作要花费大量时间,因为以前的电路设计是一个迭代的过程,你要画一个原理图,就像左边这张图。但你不知道它的性能如何,直到设计师采用该原理图进行 layout,提取寄生参数,再运行电路仿真,才会发现设计可能不符合规格,才能知道电路的性能。



接下来,设计师就要修改原理图,并再次通过 layout 来验证电路的有效性。这是一个非常漫长、反复甚至不人道的劳动密集型工作。


现在,我们可以训练图神经网络来预测寄生参数,而无需进行 layout。因此,电路设计人员可以非常快速地进行迭代,而无需手动执行 layout 步骤。事实表明:我们的神经网络对寄生参数的预测非常准确。

布局、布线挑战


我们的神经网络还可以预测布线拥塞(routing congestion),这对于芯片 layout 至关重要。在传统的流程中,我们需要制作一个网表(net list),运行布局和布线过程,这可能非常耗时,通常需要几天的时间。但如果不这么做,我们就无法得到实际的布线拥塞并发现最初布局的缺陷。我们需要对其进行重构并以不同的方式布局 macro 以避免出现下图所示的红色区域(穿过该区域的电线过多,类似于交通堵塞)。



现在借助神经网络,无需运行布局和布线,我们就可以获取这些网表并使用图神经网络大致预测拥塞的位置,准确率也非常高。这种方法暂时还不完美,但它能够显示出存在问题的区域,然后我们就能采取行动并非常快速地进行迭代,而无需进行完整的布局和布线。

自动化标准单元迁移


以上方法都是在用 AI 评价人类已经完成的设计,但实际上更令人兴奋的是用 AI 来实际设计芯片。


我来举两个例子。第一个是我们称之为 NV cell 的系统,它使用模拟退火和强化学习来设计我们的标准单元库(标准单元库是底层电子逻辑功能的集合,例如 AND、OR、INVERT、触发器、锁存器和缓冲器 )。所以在每次技术迭代的时候,比如从 7 纳米迁移到 5 纳米,我们都会拥有一个单元库。我们实际上有成千上万个这样的库,它们必须用新技术重新设计,有一套非常复杂的设计规则。


我们借助强化学习来放置晶体管,但随之而来的可能是一堆设计规则错误,而这正是强化学习所擅长的。设计芯片就像一个雅达利游戏,但它是一个在标准单元中修复设计规则错误的游戏。通过强化学习检查和修复这些设计规则错误,我们基本上能够完成标准单元的设计。


下图显示的是该工具完成度为 92% 的单元库,没有设计规则或电气规则错误。这些单元中的 12% 比人类设计的单元要小。总的来说,在单元复杂性方面,该工具做得和人类设计的单元一样好,甚至比人类的还好。


这对我们有两大好处。一是节约大量劳动力。同样是移植一个新的技术库,如果使用人力,我们需要一个 10 人左右的团队工作大半年,但借助 AI,我们只需要花几天时间运行几个 GPU 就能完成大部分可以自动化的工作(92%),然后再由人来完成剩下的 8%。很多时候我们都能拿到更好的设计,所以这个方式不光节省人力,效果也比人类手工的结果好。



相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
23天前
|
机器学习/深度学习 人工智能 语音技术
Fugatto:英伟达推出的多功能AI音频生成模型
Fugatto是由英伟达推出的多功能AI音频生成模型,能够根据文本提示生成音频或视频,并修改现有音频文件。该模型基于增强型的Transformer模型,支持复杂的组合指令,具有强大的音频生成与转换能力,广泛应用于音乐创作、声音设计、语音合成等领域。
65 1
Fugatto:英伟达推出的多功能AI音频生成模型
|
18天前
|
缓存 算法 关系型数据库
MIT韩松团队长上下文LLM推理高效框架DuoAttention:单GPU实现330万Token上下文推理
麻省理工学院韩松团队提出DuoAttention框架,旨在提高大型语言模型(LLM)处理长上下文的效率。该框架通过区分检索头和流式头,仅对检索头应用全键值缓存,减少内存消耗和计算时间,同时保持模型长上下文处理能力。实验结果显示,DuoAttention在多种模型架构上显著提升了推理效率,为LLM的实际应用提供了新可能。
45 14
|
20天前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
62 12
|
16天前
|
人工智能
带上团队一起来做 AI 编程实践丨通义灵码联合TGO鲲鹏会开启 AI 大课
带上团队一起来做 AI 编程实践丨通义灵码联合TGO鲲鹏会开启 AI 大课
|
22天前
|
人工智能 自然语言处理 知识图谱
英伟达nGPT重塑Transformer,AI训练速度暴增20倍!文本越长,加速越快
英伟达提出nGPT(Normalized Transformer),通过单位范数归一化和超球面上的表示学习,显著提升了Transformer模型的训练速度和性能。实验显示,nGPT在处理4k长度序列时,训练速度比传统Transformer快10倍,且在多个下游任务中表现出色。论文地址:https://arxiv.org/pdf/2410.01131
36 12
|
18天前
|
人工智能 自然语言处理 数据挖掘
田渊栋团队新作祭出Agent-as-a-Judge!AI智能体自我审判,成本暴跌97%
田渊栋团队提出Agent-as-a-Judge框架,利用智能体自身评估其他智能体的性能,不仅关注最终结果,还能提供中间反馈,更全面准确地反映智能体的真实能力。该框架在DevAI基准测试中表现出色,成本效益显著,为智能体的自我改进提供了有力支持。
35 7
|
17天前
|
人工智能 数据安全/隐私保护 数据中心
“芯片围城”下国产AI要放缓?答案或截然相反
12月2日,美国对华实施新一轮出口限制,将140余家中国企业列入贸易限制清单。对此,中国多个行业协会呼吁国内企业谨慎选择美国芯片。尽管受限企业表示影响有限,但此事件引发了关于AI领域芯片供应的担忧。华为云推出的昇腾AI云服务,提供全栈自主的算力解决方案,包括大规模算力集群、AI框架等,旨在应对AI算力需求,确保算力供给的稳定性和安全性,助力中国AI产业持续发展。
|
23天前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】芯片的编程体系
本文探讨了SIMD与SIMT的区别及联系,分析了SIMT与CUDA编程的关系,深入讨论了GPU在SIMT编程的本质及其与DSA架构的关系。文章还概述了AI芯片的并行分类与并行处理硬件架构,强调了理解AI芯片编程体系的重要性,旨在帮助开发者更高效地利用AI芯片算力,促进生态繁荣。
46 0
|
23天前
|
机器学习/深度学习 存储 人工智能
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。
40 0
|
1月前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。

热门文章

最新文章

下一篇
DataWorks