用什么tricks能让模型训练得更快?先了解下这个问题的第一性原理

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 用什么tricks能让模型训练得更快?先了解下这个问题的第一性原理
深度学习是门玄学?也不完全是。


每个人都想让模型训练得更快,但是你真的找对方法了吗?在康奈尔大学本科生、曾在 PyTorch 团队实习的 Horace He 看来,这个问题应该分几步解决:首先,你要知道为什么你的训练会慢,也就是说瓶颈在哪儿,其次才是寻找对应的解决办法。在没有了解基本原理(第一性原理)之前就胡乱尝试是一种浪费时间的行为。

在这篇文章中,Horace He 从三个角度分析可能存在的瓶颈:计算、内存带宽和额外开销,并提供了一些方式去判断当前处于哪一个瓶颈,有助于我们更加有针对性地加速系统。这篇文章得到了陈天奇等多位资深研究者、开发者的赞赏。


以下是原文内容:

怎样才能提高深度学习模型的性能?一般人都会选择网上博客中总结的一些随机技巧,比如「使用系统内置的运算算子,把梯度设置为 0,使用 PyTorch1.10.0 版本而不是 1.10.1 版本……」

在这一领域,当代(特别是深度学习)系统给人的感觉不像是科学,反而更像炼丹,因此不难理解用户为什么倾向于采用这种随机的方法。即便如此,这一领域也有些第一性原理可以遵循,我们可以据此排除大量方法,从而使得问题更加容易解决。

比如,如果你的训练损失远低于测试损失,那么你可能遇到了「过拟合」问题,而尝试着增加模型容量就是在浪费时间。再比如,如果你的训练损失和你的验证损失是一致的,那对模型正则化就显得不明智了。

类似地,你也可以把高效深度学习的问题划分为以下三个不同的组成部分:

  1. 计算:GPU 计算实际浮点运算(FLOPS)所花费的时间;
  2. 内存:在 GPU 内传输张量所花费的时间;
  3. 额外开销:花在其它部分的时间。

在训练机器学习模型的时候,知道你遇到的是哪类问题非常关键,使模型高效的问题也是如此。例如,当模型花费大量时间进行内存到 GPU 的转移的时候(也就是内存带宽紧张的时候),增加 GPU 的 FLOPS 就不管用。另一方面,如果你正在运行大量的矩阵乘法运算(也就是计算紧张的时候),将你的程序重写成 C++ 去减轻额外开销就不会管用。

所以,如果你想让 GPU 丝滑运行,以上三个方面的讨论和研究就是必不可少的。

惨痛教训的背后有大量工程师保持 GPU 高效运行。

注意:这个博客中的大多数内容是基于 GPU 和 PyTorch 举例子的,但这些原则基本是跨硬件和跨框架通用的。

计算

优化深度学习系统的一个方面在于我们想要最大化用于计算的时间。你花钱买了 312 万亿次浮点数运算,那你肯定希望这些都能用到计算上。但是,为了让你的钱从你昂贵的矩阵乘法中得到回报,你需要减少花费在其他部分的时间。

但为什么这里的重点是最大化计算,而不是最大化内存的带宽?原因很简单 —— 你可以减少额外开销或者内存消耗,但如果不去改变真正的运算,你几乎无法减少计算量。

与内存带宽相比,计算的增长速度增加了最大化计算利用率的难度。下表显示了 CPU 的 FLOPS 翻倍和内存带宽翻倍的时间 (重点关注黄色一栏)。


一种理解计算的方式是把它想象成工厂。我们把指令传达给我们的工厂(额外消耗),把原始材料送给它(内存带宽),所有这些都是为了让工厂运行得更加高效(计算)。


所以,如果工厂容量扩展的速度高于我们提供给它原材料的速度,它就很难达到一个顶峰效率。

即使我们工厂容量(FLOP)翻倍,但带宽跟不上,我们的性能也不能翻倍。

关于 FLOPS 还有一点要说,越来越多的机器学习加速器都有专门针对矩阵乘法的硬件配置,例如英伟达的「Tensor Cores」。


所以,你要是不做矩阵乘法的话,你只能达到 19.5 万亿次运算,而不是 312 万亿次。注意,并不是只有 GPU 这么特殊,事实上 TPU 是比 GPU 更加专门化的计算模块。

除了矩阵乘法以外,GPU 处理其他运算时都比较慢,这一现象乍看上去似乎有问题:比如像是层归一化或者激活函数的其它算子怎么办呢?事实上,这些算子在 FLOPS 上仅仅像是矩阵乘法的舍入误差一样。例如,看看下表对于 BERT 中的不同算子类型占用的 FLOP 数,其中的「Tensor Contraction」就是指矩阵乘法。


可以看到,非矩阵乘法运算仅仅占所有运算的 0.2%,所以即使它们的速度仅为矩阵乘法的 1/15 也没什么问题。

事实上,归一化运算和逐点(pointwise)运算使用的 FLOPS 仅为矩阵乘法的 1/250 和 1/700。那为什么非矩阵乘法运算会远比它们应该使用的运行时间更多呢?

回到前文「工厂」的类比,罪魁祸首经常还是如何将原始材料运到以及运出工厂,换句话说,也就是「内存带宽」。

带宽

带宽消耗本质上是把数据从一个地方运送到另一个地方的花费,这可能是指把数据从 CPU 移动到 GPU,从一个节点移动到另一个节点,甚至从 CUDA 的全局内存移动到 CUDA 的共享内存。最后一个是本文讨论的重点,我们一般称其为「带宽消耗」或者「内存带宽消耗」。前两者一般叫「数据运输消耗」或者「网络消耗」,不在本文叙述范围之内。

还是回到「工厂」的类比。虽然我们在工厂中从事实际的工作,但它并不适合大规模的存储。我们要保证它的存储是足够高效的,并且能够很快去使用(SRAM),而不是以量取胜。

那么我们在哪里存储实际的结果和「原材料」呢?一般我们要有一个仓库,那儿的地足够便宜,并且有大量的空间(DRAM)。之后我们就可以在它和工厂之间运送东西了(内存带宽)。


这种在计算单元之间移动东西的成本就是所谓的「内存带宽」成本。事实上,nvidia-smi 命令中出现的那个「内存」就是 DRAM,而经常让人抓狂的「CUDA out of memory」说的就是这个 DRAM。

值得注意的是:我们每执行一次 GPU 核运算都需要把数据运出和运回到我们的仓库 ——DRAM。

现在想象一下,当我们执行一个一元运算(如 torch.cos)的时候,我们需要把数据从仓库(DRAM)运送到工厂(SRAM),然后在工厂中执行一小步计算,之后再把结果运送回仓库。运输是相当耗时的,这种情况下,我们几乎把所有的时间都花在了运输数据,而不是真正的计算上。

因为我们正把所有的时间都花费在内存带宽上,这种运算也被称作内存限制运算(memory-bound operation),它意味着我们没有把大量时间花费在计算上。

显然,这并不是我们想要的。那我们能做什么呢?让我们来看看算子序列长什么样子。

一个逐点算子序列可能的样子。

在全局内存和计算单元之间来回传输数据的做法显然不是最佳的。一种更优的方式是:在数据工厂中一次性执行完全部运算再把数据传回。


这就是算子融合(operator fusion)—— 深度学习编译器中最重要的优化。简单地说,这种方法不会为了再次读取而将数据写入全局内存,而是通过一次执行多个计算来避免额外的内存访问。

例如,执行 x.cos ().cos () 运算,写入内存的方式需要 4 次全局读写。



x1 = x.cos() # Read from x in global memory, write to x1x2 = x1.cos() # Read from x1 in global memory, write to x2


而算子融合只需要 2 次全局内存读写,这样就实现了 2 倍加速。


x2 = x.cos().cos() # Read from x in global memory, write to x2


但是这种做法也并不容易,需要一些条件。首先,GPU 需要知道执行完当前运算后下一步会发生什么,因此无法在 PyTorch 的 Eager 模式(一次运行一个运算符)下进行此优化。其次,我们需要编写 CUDA 代码,这也不是一件简单的事。

并不是所有的算子融合都像逐点算子那样简单。你可以将逐点算子融合到归约(reduction)或矩阵乘法上。甚至矩阵乘法本身也可以被认为是一种融合了广播乘法(broadcasting multiply)和归约的运算。

任何 2 个 PyTorch 算子都可以被融合,从而节省了读取 / 写入全局内存的内存带宽成本。此外,许多现有编译器通常可以执行「简单」的融合(例如 NVFuser 和 XLA)。然而,更复杂的融合仍然需要人们手动编写,因此如果你想尝试自己编写自定义 CUDA 内核,Triton 是一个很好的起点。

令人惊讶的是,融合后的 x.cos ().cos () 运算将花费几乎与单独调用 x.cos () 相同的时间。这就是为什么激活函数的成本几乎是一样的,尽管 gelu 显然比 relu 包含更多的运算。

因此,重新实现 / 激活检查点会产生一些有趣的结果。从本质上讲,进行额外的重新计算可能会导致更少的内存带宽,从而减少运行时间。因此,我们可以通过重新实现来减少内存占用和运行时间,并在 AOTAutograd 中构建一个简洁的 min-cut 优化通道。


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1天前
|
机器学习/深度学习 算法 知识图谱
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
|
1天前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
1天前
|
机器学习/深度学习 算法
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
|
1天前
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程
|
2月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】机器学习的基本概念、算法的工作原理、实际应用案例
机器学习是人工智能的一个分支,它使计算机能够在没有明确编程的情况下从数据中学习并改进其性能。机器学习的目标是让计算机自动学习模式和规律,从而能够对未知数据做出预测或决策。
61 2
|
1月前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的基本原理与Python代码实践
【9月更文挑战第6天】本文深入探讨了人工智能领域中的机器学习技术,旨在通过简明的语言和实际的编码示例,为初学者提供一条清晰的学习路径。文章不仅阐述了机器学习的基本概念、主要算法及其应用场景,还通过Python语言展示了如何实现一个简单的线性回归模型。此外,本文还讨论了机器学习面临的挑战和未来发展趋势,以期激发读者对这一前沿技术的兴趣和思考。
|
2月前
|
机器学习/深度学习 人工智能 关系型数据库
【机器学习】Qwen2大模型原理、训练及推理部署实战
【机器学习】Qwen2大模型原理、训练及推理部署实战
434 0
【机器学习】Qwen2大模型原理、训练及推理部署实战
|
2月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
99 2
|
2月前
|
机器学习/深度学习 数据采集 物联网
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
81 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
144 0

热门文章

最新文章

相关产品

  • 人工智能平台 PAI