CVPR 2022 | 图像也是德布罗意波!华为诺亚&北大提出量子启发MLP,性能超越Swin Transfomer

简介: CVPR 2022 | 图像也是德布罗意波!华为诺亚&北大提出量子启发MLP,性能超越Swin Transfomer

近年来,计算机视觉领域的新型架构层出不穷,包括视觉 Transformer、MLP 等,它们在很多任务上都取得了超越 CNN 的性能,受到广泛关注。其中,视觉 MLP 具有极其简单的架构,它仅由多层感知器(MLP)堆叠而成。与 CNN 和 Transformer 相比,这些简洁的 MLP 架构引入了更少的归纳偏置,具有更强的泛化性能。

然而,现有视觉 MLP 架构的性能依然弱于 CNN 和 Transformer。来自华为诺亚方舟实验室、北京大学、悉尼大学的研究者提出了一种受子力学启发的视觉 MLP 架构,在 ImageNet 分类、COCO 检测、ADE20K 分割等多个任务上取得了 SOTA 性能。


论文地址:https://arxiv.org/abs/2111.12294PyTorch 代码:https://github.com/huawei-noah/CV-Backbones/tree/master/wavemlp_pytorchMindSpore 代码:https://gitee.com/mindspore/models/tree/master/research/cv/wave_mlp

Wave-MLP

该研究受量子力学中波粒二象性的启发,将 MLP 中每个图像块 (Token) 表示成波函数的形式,从而提出了一个新型的视觉 MLP 架构——Wave-MLP,在性能上大幅超越了现有 MLP 架构以及 Transformer。


量子力学是描述微观粒子运动规律的物理学分支,经典力学可被视为量子力学的特例。量子力学的一个基本属性是波粒二象性,即所有的个体(比如电子、光子、原子等)都可以同时使用粒子的术语和波的术语来描述。一个波通常包括幅值和相位两个属性,幅值表示一个波可能达到的最大强度,相位指示着当前处在一个周期的哪个位置。将一个经典意义上的粒子用波(比如,德布罗意波)的形式来表示,可以更完备地描述微观粒子的运动状态。


那么,对于视觉 MLP 中的图像块,能不能也把它表示成波的形式呢?该研究用幅值表达每个 Token 所包含的实际信息,用相位来表示这个 Token 当前所处的状态。在聚集不同 Token 信息的时候,不同 Token 之间的相位差会调制它们之间的聚合过程(如图 3 示)。考虑到来自不同输入图像的 Token 包含不同的语义内容,该研究使用一个简单的全连接模块来动态估计每个 Token 的相位。对于同时带有幅度和相位信息的 Token,作者提出了一个相位感知 Token 混合模块(PATM,如下图 1 所示)来聚合它们的信息。交替堆叠 PATM 模块和 MLP 模块构成了整个 Wave-MLP 架构。


图 1:Wave-MLP 架构中的一个单元

相比现有的视觉 Transformer 和 MLP 架构,Wave-MLP 有着明显的性能优势(如下图 2 所示)。在 ImageNet,Wave-MLP-S 模型上以 4.5G FLOPs 实现了 82.6% 的 top-1 准确率,比相似计算代价的 Swin-T 高 1.3 个点。此外,Wave-MLP 也可以推广到目标检测和语义分割等下游任务,展现出强大的泛化性能。

图 2:Wave-MLP 与现有视觉 Transformer、MLP 架构的比较

用波表示 Token

在 Wave-MLP 中,Token 被表示为同时具有幅值和相位信息的波

   (1)


其中 i 是满足 i^2 = -1 的虚数单位,|·| 表示绝对值运算,⊙是逐元素乘法。幅值 |z_j| 是实值的特征,表示每个 Token 所包含的内容。θ_j 表示相位,即 Token 在一个波周期内的当前位置。

两个 Token 之间的相位差对它们的聚合过程有很大影响 (如下图 3 所示)。当两个 token 具有相同的相位时,它们会相互增强,得到幅值更大的波(图 3(b));当两个 token 相位相反时,他们合成的波将相互减弱。在其他情况下,它们之间的相互作用更加复杂,但仍取决于相位差(图 3(a))。经典方法中使用实值表示 token 的,这实际上是上式的一个特例。

图 3:两个具有不同相位的波的聚合过程。左侧表示两个波在复数域中的叠加,右侧表示它们在实轴上的投影随着相位的变化。虚线表示两个初始相位不同的波,实线是他们的叠加。

相位感知的 Token 聚合

公式(1)中包含幅值和相位两项,幅值 z_j 类似于实值特征,可以采用标准的 Channel-FC 生成:

   (2)


对于相位,可以使用多种方式来估计。为了使得相位可以捕获每个输入的特定属性,该研究使用一个可学的估计模块来生成相位 θ_j。在获得幅值 z_j 和相位 θ_j 之后,可以根据公式(1)得到 Token 的波函数表示同时,公式(1)可以采用欧拉公式展开成连个实值向量拼接的形式:


   3)

表示不同的 Token 波函数会通过一个 Token-FC 聚合起来,得到复数域的输出:

   4)


类似于量子计算中的测量过程,复数域的需要映射到实数域里才能得到有意义的输出值。将实部和虚部做按照一定的权重进行求和,得到模块的输出:

   (5)


在视觉 MLP 中,该研究构建了一个相位感知模块(PATM,图 1)来完成 Token 聚合的过程。交替堆叠 PATM 模块和 channel-mixing MLP 组建了整个 WaveMLP 架构。

实验结果

该研究在大规模的分类数据集 ImageNet, 目标检测数据集 COCO 和语义分割数据集 ADE20K 上都进行了大量实验。

ImageNet 上图像分类的结果如表 1,表 2 所示:相比于现有的 Vision MLP 架构和 Transformer 架构,WaveMLP 都取得了明显的性能优势。



在下游目标检测、语义分割等任务中,Wave-MLP 同样表现出更优的性能。


相关文章
|
6月前
|
机器学习/深度学习 编解码 自然语言处理
全新AFPN出现 | 完胜PAFPN,堪称YOLO系列的最佳搭档
全新AFPN出现 | 完胜PAFPN,堪称YOLO系列的最佳搭档
239 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
大模型最强架构TTT问世!斯坦福UCSD等5年磨一剑, 一夜推翻Transformer
【7月更文挑战第21天】历经五年研发,斯坦福、UCSD等顶尖学府联合推出TTT架构,革新NLP领域。此架构以线性复杂度处理长序列,增强表达力及泛化能力,自监督学习下,测试阶段动态调整隐藏状态,显著提升效率与准确性。实验显示,TTT在语言模型与长序列任务中超越Transformer,论文详述于此:[https://arxiv.org/abs/2407.04620](https://arxiv.org/abs/2407.04620)。尽管如此,TTT仍需克服内存与计算效率挑战。
160 2
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
清华微软最新力作:用物理学革新Transformer注意力,大海捞针精度暴涨30%!
【10月更文挑战第30天】Transformer模型在自然语言处理(NLP)中表现出色,但在处理长文本和复杂任务时存在注意力分配不当的问题。清华大学和微软研究院提出了Diff Transformer,通过计算两个独立软最大注意力图之间的差异,有效消除噪声,提高模型性能。Diff Transformer在语言建模、减少幻觉、增强上下文学习能力和减少激活异常值等方面表现出显著优势,但也存在计算复杂度增加、对超参数敏感和适用范围有限的局限性。论文地址:https://arxiv.org/abs/2410.05258
21 2
|
1月前
|
机器学习/深度学习 数据可视化
KAN干翻MLP,开创神经网络新范式!一个数十年前数学定理,竟被MIT华人学者复活了
【10月更文挑战第12天】MIT华人学者提出了一种基于Kolmogorov-Arnold表示定理的新型神经网络——KAN。与传统MLP不同,KAN将可学习的激活函数放在权重上,使其在表达能力、准确性、可解释性和收敛速度方面表现出显著优势,尤其在处理高维数据时效果更佳。然而,KAN的复杂性也可能带来部署和维护的挑战。论文地址:https://arxiv.org/pdf/2404.19756
40 1
|
机器学习/深度学习 编解码 算法
ICCV 2023 | 当尺度感知调制遇上Transformer,会碰撞出怎样的火花?
近年来,基于Transformer和CNN的视觉基础模型取得巨大成功。有许多研究进一步地将Transformer结构与CNN架构结合,设计出了更为高效的hybrid CNN-Transformer Network,但它们的精度仍然不尽如意。本文介绍了一种新的基础模型SMT(Scale-Aware Modulation Transformer),它以更低的参数量(params)和计算量(flops)取得了大幅性能的提升。
|
6月前
|
机器学习/深度学习 编解码 自然语言处理
纯卷积BEV模型的巅峰战力 | BEVENet不用Transformer一样成就ADAS的量产未来
纯卷积BEV模型的巅峰战力 | BEVENet不用Transformer一样成就ADAS的量产未来
191 0
|
机器学习/深度学习 存储 人工智能
超高效人工光电神经元成真?速度比自然神经元快3万倍,研究登Nature子刊
超高效人工光电神经元成真?速度比自然神经元快3万倍,研究登Nature子刊
超高效人工光电神经元成真?速度比自然神经元快3万倍,研究登Nature子刊
|
机器学习/深度学习 算法 数据可视化
CVPR 2023|两行代码高效缓解视觉Transformer过拟合,美图&国科大联合提出正则化方法DropKey
CVPR 2023|两行代码高效缓解视觉Transformer过拟合,美图&国科大联合提出正则化方法DropKey
293 0
|
机器学习/深度学习 算法 异构计算
突破神经网络限制,量子蒙特卡洛研究新进展登Nature子刊
突破神经网络限制,量子蒙特卡洛研究新进展登Nature子刊
160 0
|
机器学习/深度学习 存储 人工智能
Nature子刊:科学家在类脑芯片上实现类似LSTM的功能,能效高1000倍
Nature子刊:科学家在类脑芯片上实现类似LSTM的功能,能效高1000倍
118 0