大到31x31的超大卷积核,涨点又高效,一作解读RepLKNet

简介: 大到31x31的超大卷积核,涨点又高效,一作解读RepLKNet

你有多久没调过 kernel size 了?虽然常常被人忽略,但只要将其简单加大,就能给人惊喜。


当你在卷积网络(CNN)的深度、宽度、groups、输入分辨率上调参调得不可开交的时候,是否会在不经意间想起,有一个设计维度 kernel size,一直如此显而易见却又总是被忽视,总是被默认设为 3x3 或 5x5?

当你在 Transformer 上调参调得乐不思蜀的时候,是否希望有一种简单、高效、部署容易、下游任务性能又不弱于 Transformer 的模型,带给你朴素的快乐?

近日,清华大学、旷视科技等机构的研究者发表于 CVPR 2022 的工作表明,CNN 中的 kernel size 是一个非常重要但总是被人忽略的设计维度。在现代模型设计的加持下,卷积核越大越暴力,既涨点又高效,甚至大到 31x31 都非常 work(如下表 5 所示,左边一栏表示模型四个 stage 各自的 kernel size)!

即便在大体量下游任务上,我们提出的超大卷积核模型 RepLKNet 与 Swin 等 Transformer 相比,性能也更好或相当!

image.png




太长不看版

以下是两分钟内可以看完的内容总结。

A. 我们对业界关于 CNN 和 Transformer 的知识和理解有何贡献?

我们挑战了以下习惯认知:

1. 超大卷积不但不涨点,而且还掉点?我们证明,超大卷积在过去没人用,不代表其现在不能用。人类对科学的认知总是螺旋上升的,在现代 CNN 设计(shortcut、重参数化等)的加持下,kernel size 越大越涨点!

2. 超大卷积效率很差?我们发现,超大 depth-wise 卷积并不会增加多少 FLOPs。如果再加点底层优化,速度会更快,31x31 的计算密度最高可达 3x3 的 70 倍

3. 大卷积只能用在大 feature map 上?我们发现,在 7x7 的 feature map 上用 13x13 卷积都能涨点

4. ImageNet 点数说明一切?我们发现,下游(目标检测、语义分割等)任务的性能可能跟 ImageNet 关系不大。

5. 超深 CNN(如 ResNet-152)堆叠大量 3x3,所以感受野很大?我们发现,深层小 kernel 模型有效感受野其实很小。反而少量超大卷积核的有效感受野非常大

6. Transformers(ViT、Swin 等)在下游任务上性能强悍,是因为 self-attention(Query-Key-Value 的设计形式)本质更强?我们用超大卷积核验证,发现 kernel size 可能才是下游涨点的关键

B. 我们做了哪些具体的工作?

1. 通过一系列探索性的实验,总结了在现代 CNN 中应用超大卷积核的五条准则

用 depth-wise 超大卷积,最好再加底层优化(已集成进开源框架 MegEngine

加 shortcut

用小卷积核做重参数化(即结构重参数化方法论,见我们去年的 RepVGG,参考文献 [1])

要看下游任务的性能,不能只看 ImageNet 点数高低

小 feature map 上也可以用大卷积,常规分辨率就能训大 kernel 模型

2. 基于以上准则,简单借鉴 Swin Transformer 的宏观架构,我们提出了一种架构 RepLKNet,其中大量使用超大卷积,如 27x27、31x31 等。这一架构的其他部分非常简单,都是 1x1 卷积、Batch Norm 等喜闻乐见的简单结构,不用任何 attention。

3. 基于超大卷积核,对有效感受野、shape bias(模型做决定的时候到底是看物体的形状还是看局部的纹理?)、Transformers 之所以性能强悍的原因等话题的讨论和分析。我们发现,ResNet-152 等传统深层小 kernel 模型的有效感受野其实不大,大 kernel 模型不但有效感受野更大而且更像人类(shape bias 高),Transformer 可能关键在于大 kernel 而不在于 self-attention 的具体形式。

例如,下图 1 分别表示 ResNet-101、ResNet-152、全为 13x13 的 RepLKNet、kernel 大到 31x31 的 RepLKNet 的有效感受野,可见较浅的大 kernel 模型的有效感受野非常大。

有效感受野。


相关文章
|
计算机视觉
迟到的 HRViT | Facebook提出多尺度高分辨率ViT,这才是原汁原味的HRNet思想(二)
迟到的 HRViT | Facebook提出多尺度高分辨率ViT,这才是原汁原味的HRNet思想(二)
286 0
|
19天前
|
机器学习/深度学习 存储 自动驾驶
《深度Q网络优化:突破高维连续状态空间的束缚》
深度Q网络(DQN)结合了深度学习与强化学习,解决了高维状态空间下Q表的存储和计算难题。然而,在高维连续状态空间中,DQN面临训练不稳定、收敛慢等问题。优化策略包括改进神经网络结构(如使用CNN、RNN或Transformer)、引入注意力机制、采用优先经验回放(PER)及调整目标网络更新策略等。这些方法提高了DQN在自动驾驶、机器人操作等复杂任务中的性能,未来有望在更多领域取得突破。
55 16
|
25天前
|
机器学习/深度学习 计算机视觉
《深度剖析:残差连接如何攻克深度卷积神经网络的梯度与退化难题》
残差连接通过引入“短路”连接,解决了深度卷积神经网络(CNN)中随层数增加而出现的梯度消失和退化问题。它使网络学习输入与输出之间的残差,而非直接映射,从而加速训练、提高性能,并允许网络学习更复杂的特征。这一设计显著提升了深度学习在图像识别等领域的应用效果。
43 13
|
4天前
|
机器学习/深度学习 设计模式 人工智能
何恺明ResNet级神作,分形生成模型计算效率狂飙4000倍!清华校友一作
何恺明ResNet级神作,分形生成模型计算效率狂飙4000倍!清华校友一作
|
1月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点
YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点
31 0
YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点
|
4月前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
183 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
8月前
|
人工智能 自然语言处理 网络架构
单一作者论文,谷歌提出百万专家Mixture,超越密集前馈、稀疏MoE
【7月更文挑战第27天】谷歌提出了一种名为“百万专家Mixture”的神经网络架构,旨在解决Transformer模型处理大规模数据时面临的计算和内存效率问题。该架构通过利用“产品键”技术实现从大规模专家池中的高效检索,相较于传统密集前馈网络和稀疏MoE模型,在性能-计算权衡方面展现出明显优势。尽管如此,模型训练的复杂性和大规模模型的有效管理仍然是挑战。[链接](https://arxiv.org/abs/2407.04153)
94 2
|
传感器 人工智能 算法
盘一盘 | 基于BEV空间的视觉感知算法模型梳理(自下而上&自上而下)(上)
激光雷达传感器可以提供物体准确的深度信息以及结构信息;但激光雷达传感器提供物体信息的距离比较有限,同时其获得的点云数据与相机传感器采集到的图像信息相比更加稀疏;
盘一盘 | 基于BEV空间的视觉感知算法模型梳理(自下而上&自上而下)(上)
|
传感器 机器学习/深度学习 人工智能
盘一盘 | 基于BEV空间的视觉感知算法模型梳理(自下而上&自上而下)(下)
激光雷达传感器可以提供物体准确的深度信息以及结构信息;但激光雷达传感器提供物体信息的距离比较有限,同时其获得的点云数据与相机传感器采集到的图像信息相比更加稀疏;
盘一盘 | 基于BEV空间的视觉感知算法模型梳理(自下而上&自上而下)(下)
|
机器学习/深度学习 编解码 PyTorch
大到31x31的超大卷积核,涨点又高效,一作解读RepLKNet(2)
大到31x31的超大卷积核,涨点又高效,一作解读RepLKNet
140 0