无需大量神经元,用神经形态机器人玩桌上足球,兼具速度与准确率

简介: 无需大量神经元,用神经形态机器人玩桌上足球,兼具速度与准确率

与深度学习不同,类脑电路需要真实世界的测试。


人类似乎着迷于让机器玩游戏,早在 1770 年就有发明家发明了国际象棋游戏机,名为「土耳其机器人」,他们声称这台机器可以击败任何一名游戏玩家(其实这是一个人工智能骗局);1997 年 IBM 的超级计算机深蓝在比赛中击败卡斯巴罗夫,成为第一个在标准比赛时限内击败国际象棋世界冠军的电脑系统;之后由 DeepMind 哈萨比斯领衔的团队开发了 AlphaGo,这是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的智能体。

为什么众多研究者对生物体的信息传输和感知方式感兴趣?坦率地讲,这是因为生物体优于当今的计算技术,今天的计算技术似乎正在迅速达到极限。商品传感器产生的数据太多,计算机无法理解,这些计算机在试图理解它们时消耗了太多的能量。然而在生物界,不起眼的蚊子,它的大脑仅由大约 200000 个神经元组成,但它的飞行控制和避障能力却远远优于人类构造的任何东西;在能耗方面,蜜蜂的大脑有 100 万个神经元,功耗却只有 0.1mW;人类大脑只需消耗约 20 W 的能量就能够满足日常工作,行动等。但对于机器来说,以 GPT-3 为例,单次训练的能耗就相当于 126 个丹麦家庭一年的能源消耗。这就是生物智能,与传统人工智能之间一个很大的差别。

截止目前,哪怕是最先进的超级计算机,其复杂程度也无法与大脑媲美。计算机是线性的,主要依靠高速中枢,在中央处理器和存储芯片之间实现数据的传输。相比之下,大脑则处于全方位的互联状态,其密度和多样性均是现代计算机的数十亿倍。近年来,计算机微型化使得传统计算性能得到大幅提升,但存储器与中央处理器之间数据的传输会消耗大量能源,产生多余热量,这一瓶颈限制了计算机的进一步改进。

近年来,受大脑神经系统的启发,神经形态计算成为人工智能领域的一个重要研究方向,近日,来自澳大利亚西悉尼大学国际神经形态系统中心(ICNS)的研究者构造了一个神经形态机器人来玩桌上足球。

用神经形态传感器追踪运动的小球

首先 ICNS 构建了一个可以玩弹球机(pinball)的小型机器人 demo,该机器人可以将三个小球保持在桌子上,演示效果与人类玩家大致相同。令人惊讶的是,与常见的深度学习系统中有数十万或数百万个人工神经元不同,这种微小的神经形态仅使用两个人工神经元就可以解释和作用于基于事件的成像器的输入。


在弹球游戏上取得了不错的效果之后,该团队认为需要一项更复杂和要求更高的任务来进一步推动神经形态研究,因此将目光转向了桌上足球。

桌上足球所有动作都发生在二维空间中,只需要八个电机来控制桌子上的小人物即可,但这实现起来比想象的要困难得多。多年来,人们曾多次尝试构建机器人桌上足球,都取得了不同程度的成功,但都没有使用神经形态传感器。

一般来讲,使用神经形态传感器跟踪球很容易,然而,桌上足球是一种更具动态性的游戏,尤其是当涉及人类玩家时,每个人都有不同的策略,他们的动作并不总是合乎逻辑或者必要的。

有些研究者尝试使用非神经形态解决方案(例如深度学习)来玩桌上足球,然而深度学习神经网络的处理方式(通常在 GPU 上)不太适合此类任务,因为 GPU 不是一次只处理一帧,而是处理批量图像。在桌上足球中,玩家不关心球过去在哪里,甚至都不关心球现在在哪里;他们真正关心的是球接下来会在哪里。

其次,研究者发现深度学习方法对问题的微小变化极为敏感,摄像头的轻微晃动、球员向不同方向拉动时球台的轻微倾斜,甚至照明条件的变化都会导致深度学习球跟踪器的性能崩溃。

ICNS 的研究着眼于更简单、更快的神经形态网络,这些算法处理来自相机的每个事件(在神经形态计算中也称为脉冲),并使用它们来更新球位置估计。

该神经形态网络没有使用大量的神经元层,而是使用 16 个小型模式识别网络,每个网络 18 x 18 像素,因此在游戏中的任何时候都只需考虑 364 个像素,这使得该网络非常快速且很准确。速度是至关重要的,因为事件驱动算法需要跟上相机产生的时间敏感数据,每个事件只需要一些小而简单的计算。虽然这个系统不会对经验丰富的球员构成太大的威胁,但该网络跟踪已经可以阻挡对方的球,而进球得分仍是一项正在进行的工作。


原则上,深度学习可以执行类似的操作,但它需要查看整个图像,并对网络的每一层执行更多数量级的计算。这不仅比该系统使用的数据多得多,而且还有效地将事件驱动(event-driven)的输出转换回帧。


目前,ICNS 的算法基于记录的事件数据离线训练,使用了一种遗传最优解算法,既可以学习球的外观,也可以很好地估计它接下来的位置。该算法学习如何从数据本身中识别球,而不是通过任何编码。此外,算法还从球的实际移动方式中学习,而不是基于对球的移动预期,这一点很关键。

下一步,ICNS 将把基于离线训练的学习迁移到实时在线学习,让网络在游戏进行中不断学习和适应。这或许有助于系统对其训练所在的特定桌子的灵敏度。

这种事件驱动算法是使用脉冲神经形态硬件(neuromorphic hardware)工作的算法的中间步骤。目前已有一些受大脑启发的处理器,包括英特尔的类脑芯片 Loihi、世界首家神经形态处理器商业生产商 BrainChip 的 Akida,它们将信息编码为脉冲序列,并与基于事件的传感器自然契合。一旦有了稳定的脉冲算法,神经形态计算就将取得更多进展。

最后,ICNS 团队表示,在设计机器人玩桌上足球时,他们专注于降低成本并开源整个项目。

原文链接:https://spectrum.ieee.org/robotic-foosball-table

相关文章
|
机器学习/深度学习 机器人 TensorFlow
我用 tensorflow 实现的“一个神经聊天模型”:一个基于深度学习的聊天机器人
概述 这个工作尝试重现这个论文的结果 A Neural Conversational Model (aka the Google chatbot). 它使用了循环神经网络(seq2seq 模型)来进行句子预测。
1515 0
|
6月前
|
人工智能 自然语言处理 机器人
9.9K star!大模型原生即时通信机器人平台,这个开源项目让AI对话更智能!
"😎高稳定、🧩支持插件、🦄多模态 - 大模型原生即时通信机器人平台"
179 0
|
4月前
|
弹性计算 自然语言处理 Ubuntu
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人
本文描述在阿里云上从0开始构建一个LLM智能问答钉钉机器人。LLM直接调用了阿里云百炼平台提供的调用服务。
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人
|
3月前
|
机器人
陌陌自动回复消息脚本,陌陌自动打招呼回复机器人插件,自动聊天智能版
这是一款为陌陌用户设计的自动回复软件,旨在解决用户无法及时回复消息的问题,提高成交率和有效粉丝数。软件通过自动化操作实现消息检测与回复功能
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
TsingtaoAI具身智能机器人开发套件及实训方案
该产品套件创新性地融合了先进大模型技术、深度相机与多轴协作机械臂技术,构建了一个功能强大、灵活易用的人机协作解决方案。其核心在于将智能决策、精准感知与高效执行完美结合,为高校实训领域的发展注入新动力。
348 10
|
5月前
|
人工智能 自然语言处理 安全
Deepseek 的 “灵魂”,宇树的 “躯体”,智能机器人还缺一个 “万万不能”
法思诺创新探讨智能机器人产业的发展,指出Deepseek的AI“灵魂”与宇树的机器人“躯体”虽技术先进,但缺乏关键的商业模式。文章分析了两者在硬件和软件领域的困境,并提出通过软硬一体化结合及明确商业模式,才能实现真正实用的智能机器人。未来,需聚焦高频刚需场景、优化付费体验、推动技术创新,让智能机器人走进千家万户。法思诺提供相关课程与咨询服务,助力行业突破。
125 0
|
5月前
|
传感器 机器学习/深度学习 人工智能
自己都站不稳,怎么护理人?智能机器人的自主平衡问题,用TRIZ和DeepSeek有解吗?
法思诺创新探讨机器人自主平衡难题,结合TRIZ创新理论与DeepSeek大模型,为仿人机器人动态平衡提供解决方案。文章分析了机器人平衡差的原因,包括复杂环境、传感器限制、算法难度和机械设计挑战等,并提出通过TRIZ原理(如矛盾识别、理想解)与DeepSeek的AI能力(如数据学习、强化学习)协同优化平衡性能。展望未来,2024-2028年将实现从实验室验证到家用场景落地,推动消费级人形机器人发展。
190 0
|
8月前
|
人工智能 机器人 API
AppFlow:无代码部署Dify作为钉钉智能机器人
本文介绍如何通过计算巢AppFlow完成Dify的无代码部署,并将其配置到钉钉中作为智能机器人使用。首先,在钉钉开放平台创建应用,获取Client ID和Client Secret。接着,创建消息卡片模板并授予应用发送权限。然后,使用AppFlow模板创建连接流,配置Dify鉴权凭证及钉钉连接凭证,完成连接流的发布。最后,在钉钉应用中配置机器人,发布应用版本,实现与Dify应用的对话功能。
1776 7
AppFlow:无代码部署Dify作为钉钉智能机器人
|
7月前
|
人工智能 自然语言处理 算法
基于DeepSeek的具身智能高校实训解决方案——从DeepSeek+机器人到通用具身智能
本实训方案围绕「多模态输入 -> 感知与理解 -> 行动执行 -> 反馈学习」的闭环过程展开。通过多模态数据的融合(包括听觉、视觉、触觉等),并结合DeepSeek模型和深度学习算法,方案实现了对自然语言指令的理解、物体识别和抓取、路径规划以及任务执行的完整流程。
1015 12

热门文章

最新文章