MIMO系统Vblast检测算法误码率matlab仿真,对比了zf,mmse,mmse-sic,zf-sic,osic

简介: MIMO系统Vblast检测算法误码率matlab仿真,对比了zf,mmse,mmse-sic,zf-sic,osic

1.算法仿真效果
matlab2022a仿真结果如下:

270e61a67f1595f9a4f4833b989eb89b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    移动通信系统的性能在很大程度上决定于无线信道的特性。单发单收系统无线信道的特性已经研究得很透彻,针对其各通信标准所采用的载频、带宽、环境等都有权威机构给出实测的信道模型。对于多天线信道而言,许多单天线的概念都被继承了下来,如路径传播损耗、阴影衰落、多径衰落 损耗、长期衰落、短期衰落、相干时间、相干带宽、频率选择性衰落、平坦衰落等 , 所采用的信道模型也基本都是单天线情况下的一些拓展。本实验采用独立的慢衰落环境中的多输入多输出 MIMO 系统,假设发送端的天线数目为Mt,接收端端的天线数目为 Mr。用hij表示从第 j 个发射天线到第 i 个接收天线的信道增益。接收天线i处的噪声为ni,j=1,…, Mt ,i=1,…, Mr ;则第i个接收天线接收信号为:

5214cd1cc601afc927e737cce4e583b0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.1zf

  ZF均衡算法是一种根据峰值失真准则推导而来的线性均衡算法。将OFDM系统接收端的频域输出方程组用矩阵表示为

Y=HX+W

   其中W为加性高斯白噪声。为了得到发送端的发送信号X,最简单的实现方法是将Y乘以矩阵的 逆,即:

abc23314dcdb7cbe66223c4342823f3f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   ZF算法有个很大的缺点,没有对噪声进行消除,反而会放大噪声,当信噪比比较低时,性能会非常不好。

2.2mmse

  mimo系统通过在不同天线上发送相互独立的数据流显著提高系统的频谱效率,接收端可以采用线性或者非线性的方式进行mimo信号的检测。MMSE能够最大化检测后的SINR(Signal to Interference plus Noise Ratio,干扰信噪比,即期望信号与无用噪声的比值)。即,MMSE检测是期望最小化噪声干扰。

aaf66be72098c121759e10897ff02325_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.3osic

    一般情况下,线性检测方法的性能比非线性检测方法要差,但是线性检测方法的硬件实现复杂度低。通过排序的连续干扰消除(Ordered Successive Interference Cancellation,OSIC)方法可以改善线性检测方法的性能,而不会显著提高复杂度。它采用一组线性接收机,每个接收机检测并行数据流中的一个流,在每个阶段能够成功的从接收信号中删除检测出的信号成分。即在每个阶段将检测出来的信号从接收信号中减去,使得用于后续阶段的剩余信号具有更少的干扰。如下图给出4个空间数据流的OSIC信号检测过程。



3.MATLAB核心程序

      SNR(i) = 10^(SNRs(i)/10);
      sigma  = 1/sqrt(SNR(i));
      for times=1:Meantimes
          [i,times]
          %信源
........................................................
 
               %ZF
               det_zf = G*R(:, ijk);
               dec1((ijk-1)*tx+[1:tx],:) = func_demod(det_zf.',index).';
        
               %MMSE
               det_MMSE=G1*R(:, ijk);
               dec2((ijk-1)*tx+[1:tx],:) = func_demod(det_MMSE.',index).';
               % MMSE-SIC
               dec3((ijk-1)*tx+[1:tx],:) = func_mmsesic (tx,G1,r, h_mmse_sic,rx,sigma,index);       
               % ZF_SIC 
               dec4((ijk-1)*tx+[1:tx],:) = func_zfsic(tx,G,r_zf_sic,h_zf_sic,rx,index); 
               % OSIC
               dec5((ijk-1)*tx+[1:tx],:) = func_osic(tx,r_osic, h_osic,p0,g1,index,sigma);
            
             end     
           NumErr1(i,times)=sum(abs(dec1.'~=signals));    
           NumErr2(i,times)=sum(abs(dec2.'~=signals));
           NumErr3(i,times)=sum(abs(dec3.'~=signals));
           NumErr4(i,times)=sum(abs(dec4.'~=signals));
           NumErr5(i,times)=sum(abs(dec5.'~=signals));
      end
end
Ber1=mean(NumErr1.')/lens;                      
Ber2=mean(NumErr2.')/lens;
Ber3=mean(NumErr3.')/lens;
Ber4=mean(NumErr4.')/lens;
Ber5=mean(NumErr5.')/lens;
相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
62 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
22天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
117 66
|
16天前
|
算法
基于爬山法MPPT最大功率跟踪算法的光伏发电系统simulink建模与仿真
本课题基于爬山法MPPT算法,对光伏发电系统进行Simulink建模与仿真。使用MATLAB2022a版本,通过调整光伏电池的工作状态以实现最大功率输出。爬山法通过逐步优化工作点,确保光伏系统在不同条件下均能接近最大功率点。仿真结果显示该方法的有效性,验证了模型的正确性和可行性。
|
18天前
|
监控 算法 JavaScript
基于 Node.js Socket 算法搭建局域网屏幕监控系统
在数字化办公环境中,局域网屏幕监控系统至关重要。基于Node.js的Socket算法实现高效、稳定的实时屏幕数据传输,助力企业保障信息安全、监督工作状态和远程技术支持。通过Socket建立监控端与被监控端的数据桥梁,确保实时画面呈现。实际部署需合理分配带宽并加密传输,确保信息安全。企业在使用时应权衡利弊,遵循法规,保障员工权益。
33 7
|
22天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
2天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
12天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
13天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
13天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。

热门文章

最新文章