PyTorch 之 基于经典网络架构训练图像分类模型

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052

文章目录


一、 模块简单介绍

1. 数据预处理部分

2. 网络模块设置

3. 网络模型保存与测试

二、数据读取与预处理操作

1. 制作数据源

2. 读取标签对应的实际名字

3. 展示数据

三、模型构建与实现

1. 加载 models 中提供的模型,并且直接用训练的好权重当做初始化参数

2. 参考 pytorch 官网例子

3. 设置哪些层需要训练

4. 优化器设置

5. 训练模块

6. 测试模型效果


本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052

4a647097fcdc46b5bfc6e76bbba2425f.png


一、 模块简单介绍

  • 我们可以进入 pytorch 的官方网站,对模型的基本架构和训练好的参数进行直接调用,具体链接如下 https://pytorch.org/


1. 数据预处理部分

(1) 数据增强通过 torchvision 中 transforms 模块的自带功能实现,比较实用。

(2) 数据预处理通过 torchvision 中 transforms 也帮我们实现好了,直接调用即可。

(3) DataLoader 模块可以直接读取 batch 数据。


2. 网络模块设置

(1) 加载预训练模型,torchvision 中有很多经典网络架构,调用起来十分方便,并且可以用人家训练好的权重参数来继续训练,也就是所谓的迁移学习。

(2) 需要注意的是别人训练好的任务跟咱们的可不是完全一样,需要把最后的 head 层改一改,一般也就是最后的全连接层,改成咱们自己的任务。

(3) 训练时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的。


3. 网络模型保存与测试

  • (1) 模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存。
  • (2) 读取模型进行实际测试。
  • 5b66a833cae04710b3ab3ea94ec3d5c5.png
import os
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
#pip install torchvision
from torchvision import transforms, models, datasets
#https://pytorch.org/docs/stable/torchvision/index.html
import imageio
import time
import warnings
import random
import sys
import copy
import json
from PIL import Image

二、数据读取与预处理操作

  • 在最开始,我们先进行训练集和测试集的数据读取。
data_dir = './flower_data/'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

1. 制作数据源


  • 由于整体数据集较少,因此,我们通过 data_transforms 进行数据增强,指定所有图像预处理操作,包括旋转,裁剪,水平翻转、垂直翻转等等。
  • 需要注意的是,这里分为训练集和数据集两部分。
data_transforms = {
    'train': transforms.Compose([transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
        transforms.CenterCrop(224),#从中心开始裁剪
        transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
        transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
        transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
        transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
    ]),
    'valid': transforms.Compose([transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}


  • 在数据加强完后,我们将单次传递给程序用以训练的数据也就是样本的个数设置为 8。
  • 在传入数据集的时候,第一个参数是我们原始数据的路径,第二个参数是我们的数据增强方法。
batch_size = 8
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes
  • 接下来,我们读取数据集的基本信息,包括训练集中的数据个数,存储路径等等信息,测试集也是相同的。
image_datasets
#{'train': Dataset ImageFolder
#     Number of datapoints: 6552
#     Root location: ./flower_data/train
#     StandardTransform
# Transform: Compose(
#                RandomRotation(degrees=(-45, 45), resample=False, expand=False)
#                CenterCrop(size=(224, 224))
#                RandomHorizontalFlip(p=0.5)
#                RandomVerticalFlip(p=0.5)
#                ColorJitter(brightness=[0.8, 1.2], contrast=[0.9, 1.1], saturation=[0.9, 1.1], #hue=[-0.1, 0.1])
#                RandomGrayscale(p=0.025)
#                ToTensor()
#                Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
#            ), 'valid': Dataset ImageFolder
#     Number of datapoints: 818
#     Root location: ./flower_data/valid
#     StandardTransform
# Transform: Compose(
#                Resize(size=256, interpolation=PIL.Image.BILINEAR)
#                CenterCrop(size=(224, 224))
#                ToTensor()
#                Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
#            )}
  • 我们也可以打印 dataloaders 中的信息,包含训练集和测试集两个。
dataloaders
#{'train': <torch.utils.data.dataloader.DataLoader at 0x21c5388b2b0>,
# 'valid': <torch.utils.data.dataloader.DataLoader at 0x21c539a80b8>}
  • 查看 dataset 中的数据数量,其中训练集包含 6552 个样本,测试集中包含 818 个样本。
dataset_sizes
#{'train': 6552, 'valid': 818}


2. 读取标签对应的实际名字

  • 在我们的文件当中,包含一个 json 文件,这中间包含了基本的标签信息,每个数字对应一种花的种类,在此,我们对这些信息进行读取。
  • fddec3c7e07e4fefa94dff2af05d4aad.png


with open('cat_to_name.json', 'r') as f:
    cat_to_name = json.load(f)
cat_to_name

66d96ae403b2481280b19a1f81e0138f.png


3. 展示数据


  • 在展示数据时,需要注意 tensor 的数据需要转换成 numpy 的格式,而且还需要还原回标准化的结果。
  • 由于现在的数据都是已经处理完成后的数据,因此,如果我们想要展示的话需要对这些数据进行还原。
def im_convert(tensor):
    """ 展示数据"""
    image = tensor.to("cpu").clone().detach()
    image = image.numpy().squeeze()
    image = image.transpose(1,2,0)
    image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    image = image.clip(0, 1)
    return image

  • 在还原完成后,我们只需要对其中的数据进行读取即可,这里展示 8 个数据为例。
fig=plt.figure(figsize=(20, 12))
columns = 4
rows = 2
dataiter = iter(dataloaders['valid'])
inputs, classes = dataiter.next()
for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    ax.set_title(cat_to_name[str(int(class_names[classes[idx]]))])
    plt.imshow(im_convert(inputs[idx]))
plt.show()

c5152c4ce73544e6a6ec48d49a1ff522.png

三、模型构建与实现

1. 加载 models 中提供的模型,并且直接用训练的好权重当做初始化参数

  • 第一次执行需要下载,可能会比较慢,大家不必担心。
model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
  • 在下载完成后,通过设置 feature_extract 为 True 或 False,决定是否用人家训练好的特征来做,这里直接使用人家训练好的特征,也就是设置为 True。
feature_extract = True


  • 之后,我们决定是否用 GPU 进行训练。
train_on_gpu = torch.cuda.is_available()
if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#CUDA is available!  Training on GPU ...
  • 进行模型架构的打印。
def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False
model_ft = models.resnet152()
model_ft


4239533061af4205b6498524d0dd1214.png

2. 参考 pytorch 官网例子

  • 选择合适的模型,不同模型的初始化方法稍微有点区别,具体的代码如下所示。
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    model_ft = None
    input_size = 0
    if model_name == "resnet":
        """ Resnet152
        """
        model_ft = models.resnet152(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),
                                   nn.LogSoftmax(dim=1))
        input_size = 224
    elif model_name == "alexnet":
        """ Alexnet
        """
        model_ft = models.alexnet(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224
    elif model_name == "vgg":
        """ VGG11_bn
        """
        model_ft = models.vgg16(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224
    elif model_name == "squeezenet":
        """ Squeezenet
        """
        model_ft = models.squeezenet1_0(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
        model_ft.num_classes = num_classes
        input_size = 224
    elif model_name == "densenet":
        """ Densenet
        """
        model_ft = models.densenet121(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier.in_features
        model_ft.classifier = nn.Linear(num_ftrs, num_classes)
        input_size = 224
    elif model_name == "inception":
        """ Inception v3
        Be careful, expects (299,299) sized images and has auxiliary output
        """
        model_ft = models.inception_v3(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        # Handle the auxilary net
        num_ftrs = model_ft.AuxLogits.fc.in_features
        model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
        # Handle the primary net
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs,num_classes)
        input_size = 299
    else:
        print("Invalid model name, exiting...")
        exit()
    return model_ft, input_size


3. 设置哪些层需要训练

  • 在关于哪些层需要训练,首先导入模型的名字,把最终的输出结果 102 导入进去,然后选择是否动那些层,是否使用人家的模型参数。
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
  • 使用 GPU 进行计算。
model_ft = model_ft.to(device)


  • 将我们训练完成后的模型保存到指定路径之下。
filename='checkpoint.pth'

  • 否训练所有层。
params_to_updateparams_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)
#Params to learn:
#  fc.0.weight
#  fc.0.bias
#model_ft

3417f92a18374636b2a5b2e02518ac45.png


4. 优化器设置

  • 进行学习率衰减。
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
#最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()

5. 训练模块

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False,filename=filename):
    since = time.time()
    best_acc = 0
    """
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    model.class_to_idx = checkpoint['mapping']
    """
    model.to(device)
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]['lr']]
    best_model_wts = copy.deepcopy(model.state_dict())
    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)
        # 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()   # 验证
            running_loss = 0.0
            running_corrects = 0
            # 把数据都取个遍
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)
                # 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                with torch.set_grad_enabled(phase == 'train'):
                    if is_inception and phase == 'train':
                        outputs, aux_outputs = model(inputs)
                        loss1 = criterion(outputs, labels)
                        loss2 = criterion(aux_outputs, labels)
                        loss = loss1 + 0.4*loss2
                    else:#resnet执行的是这里
                        outputs = model(inputs)
                        loss = criterion(outputs, labels)
                    _, preds = torch.max(outputs, 1)
                    # 训练阶段更新权重
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()
                # 计算损失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
            time_elapsed = time.time() - since
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
            # 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = {
                  'state_dict': model.state_dict(),
                  'best_acc': best_acc,
                  'optimizer' : optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)
        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        LRs.append(optimizer.param_groups[0]['lr'])
        print()
    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))
    # 训练完后用最好的一次当做模型最终的结果
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))

48c728e25faf4e5d9932d2100546971b.png


for param in model_ft.parameters():
    param.requires_grad = True
#再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(params_to_update, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
#损失函数
criterion = nn.NLLLoss()
#Load the checkpoint​
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))

194c60b420f64d6181efb03d1ad7c544.png


6. 测试模型效果

  • 输入一张测试图像,看看网络的返回结果:
probs, classes = predict(image_path, model)
print(probs)
print(classes)
#[ 0.01558163  0.01541934  0.01452626  0.01443549  0.01407339]
#['70', '3', '45', '62', '55']
  • 这里需要注意的是,预处理方法需相同。
  • 然后,我们加载训练好的模型。
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
#GPU模式
model_ft = model_ft.to(device)
#保存文件的名字
filename='seriouscheckpoint.pth'
#加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

测试数据处理方法需要跟训练时一直才可以。

crop 操作的目的是保证输入的大小是一致的。

标准化操作也是必须的,用跟训练数据相同的 mean 和 std,但是需要注意一点训练数据是在 0-1 上进行标准化,所以测试数据也需要先归一化。

PyTorch 中颜色通道是第一个维度,跟很多工具包都不一样,需要转换。

def process_image(image_path):
    # 读取测试数据
    img = Image.open(image_path)
    # Resize,thumbnail方法只能进行缩小,所以进行了判断
    if img.size[0] > img.size[1]:
        img.thumbnail((10000, 256))
    else:
        img.thumbnail((256, 10000))
    # Crop操作
    left_margin = (img.width-224)/2
    bottom_margin = (img.height-224)/2
    right_margin = left_margin + 224
    top_margin = bottom_margin + 224
    img = img.crop((left_margin, bottom_margin, right_margin,   
                      top_margin))
    # 相同的预处理方法
    img = np.array(img)/255
    mean = np.array([0.485, 0.456, 0.406]) #provided mean
    std = np.array([0.229, 0.224, 0.225]) #provided std
    img = (img - mean)/std
    # 注意颜色通道应该放在第一个位置
    img = img.transpose((2, 0, 1))
    return img
  • 在数据测试完成后,我们需要对测试数据进行展示,也就是需要进行还原操作。
def imshow(image, ax=None, title=None):
    """展示数据"""
    if ax is None:
        fig, ax = plt.subplots()
    # 颜色通道还原
    image = np.array(image).transpose((1, 2, 0))
    # 预处理还原
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    image = std * image + mean
    image = np.clip(image, 0, 1)
    ax.imshow(image)
    ax.set_title(title)
    return ax
image_path = 'image_06621.jpg'
img = process_image(image_path)
imshow(img)

2536fb98d4394cc3b6069d3188e48aa9.png

之后进行预测结果的展示。

fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2
for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    plt.imshow(im_convert(images[idx]))
    ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                 color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()


b53e7b380d2d40cdaaf86f49dd7792a0.png



相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
9天前
|
机器学习/深度学习 计算机视觉 iOS开发
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
34 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
|
22天前
|
机器学习/深度学习 算法 PyTorch
昇腾910-PyTorch 实现 ResNet50图像分类
本实验基于PyTorch,在昇腾平台上使用ResNet50对CIFAR10数据集进行图像分类训练。内容涵盖ResNet50的网络架构、残差模块分析及训练代码详解。通过端到端的实战讲解,帮助读者理解如何在深度学习中应用ResNet50模型,并实现高效的图像分类任务。实验包括数据预处理、模型搭建、训练与测试等环节,旨在提升模型的准确率和训练效率。
113 54
|
22天前
|
机器学习/深度学习 算法 PyTorch
PyTorch 实现MobileNetV1用于图像分类
本实验基于PyTorch和昇腾平台,详细讲解了如何使用MobileNetV1模型对CIFAR10数据集进行图像分类。内容涵盖MobileNetV1的特点、网络架构剖析(尤其是深度可分离卷积)、代码实现及训练过程。通过该实验,读者可以掌握轻量级CNN模型在移动端或嵌入式设备中的应用,并了解其在资源受限环境下的高效表现。实验包括数据预处理、模型训练与测试等环节,帮助用户快速上手并优化模型性能。
100 53
|
13天前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
63 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
2月前
|
NoSQL 关系型数据库 MySQL
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
201 56
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
|
13天前
|
机器学习/深度学习 计算机视觉 iOS开发
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
54 12
|
9天前
|
机器学习/深度学习 文件存储 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
17 1
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
本文将系统阐述DPO的工作原理、实现机制,以及其与传统RLHF和SFT方法的本质区别。
104 22
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
|
27天前
|
机器学习/深度学习 算法 PyTorch
昇腾910-PyTorch 实现 GoogleNet图像分类
本实验基于PyTorch在昇腾平台上实现GoogleNet模型,针对CIFAR-10数据集进行图像分类。内容涵盖GoogleNet的创新点(如Inception模块、1x1卷积、全局平均池化等)、网络架构解析及代码实战分析。通过详细讲解模型搭建、数据预处理、训练与测试过程,帮助读者掌握如何使用经典CNN模型进行高效图像分类。实验中还介绍了辅助分类器、梯度传播优化等技术细节,并提供了完整的训练和测试代码示例。
|
27天前
|
机器学习/深度学习 算法 PyTorch
昇腾910-PyTorch 实现 Alexnet图像分类
本文介绍了在昇腾平台上使用PyTorch实现AlexNet对CIFAR-10数据集进行图像分类的实战。内容涵盖AlexNet的创新点、网络架构解析及代码实现,包括ReLU激活函数、Dropout、重叠最大池化等技术的应用。实验中详细展示了如何构建模型、加载数据集、定义训练和测试模块,并通过60个epoch的训练验证模型性能。

热门文章

最新文章

推荐镜像

更多