动手强化学习(九):策略梯度算法

简介:  首先定义策略网络PolicyNet,其输入是某个状态,输出则是该状态下的动作概率分布,这里采用在离散动作空间上的softmax()函数来实现一个可学习的多项分布(multinomial distribution)。

文章转于 伯禹学习平台-动手学强化学习 (强推)


本文所有代码均可在jupyter notebook运行


与君共勉,一起学习。


1. 简介


 之前介绍的 Q-learning、DQN 及 DQN 改进算法都是基于价值(value-based)的方法,其中 Q-learning 是处理有限状态的算法,而 DQN 可以用来解决连续状态的问题。在强化学习中,除了基于值函数的方法,还有一支非常经典的方法,那就是基于策略(policy-based)的方法。对比两者,基于值函数的方法主要是学习值函数,然后根据值函数导出一个策略,学习过程中并不存在一个显式的策略;而基于策略的方法则是直接显式地学习一个目标策略。策略梯度是基于策略的方法的基础,本章从策略梯度算法说起。


2. 策略梯度


 基于策略的方法首先需要将策略参数化。假设目标策略 π θ 是一个随机性策略,并且处处可微,其中θ是对应的参数。我们可以用一个线性模型或者神经网络模型来为这样一个策略函数建模,输入某个状态,然后输出一个动作的概率分布。我们的目标是要寻找一个最优策略并最大化这个策略在环境中的期望回报。我们将策略学习的目标函数定义为


J ( θ ) = E s 0 [ V π θ ( s 0 ) ]


 其中, s 0 表示初始状态。现在有了目标函数,我们将目标函数对策略 θ求导,得到导数后,就可以用梯度上升方法来最大化这个目标函数,从而得到最优策略。


第 3 章讲解过策略 π 下的状态访问分布,在此用 ν π表示。然后我们对目标函数求梯度,可以得到如下式子,更详细的推导过程将在 后面给出。


image.png


 一个状态下,梯度的修改是让策略更多地去采样到带来较高 Q 值的动作,更少地去采样到带来较低 Q 值的动作,如图 所示。


a913eca7306940ec994d9857b3745e11.png


image.png


 其中, T 是和环境交互的最大步数。例如,在车杆环境中, T = 200  。


3. REINFORCE


REINFORCE 算法的具体算法流程如下:


  • 初始化策略参数 θ


  • for 序列 e = 1 → E do :


  • 用当前策略 π θ 采样轨迹 { s 1 , a 1 , r 1 , s 2 , a 2 , r 2 , … s T , a T , r T }


  • 计算当前轨迹每个时刻 t 往后的回报image.png  ,记为 ψ t


  • 对 θ进行更新, image.png


  • end for


这便是 REINFORCE 算法的全部流程了。接下来让我们来用代码来实现它,看看效果如何吧!


4. REINFORCE 代码实践


 我们在车杆环境中进行 REINFORCE 算法的实验。


import gym
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import rl_utils


 首先定义策略网络PolicyNet,其输入是某个状态,输出则是该状态下的动作概率分布,这里采用在离散动作空间上的softmax()函数来实现一个可学习的多项分布(multinomial distribution)。


class PolicyNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
    def forward(self, x):
        x = F.relu(self.fc1(x))
        return F.softmax(self.fc2(x), dim=1)


 再定义我们的 REINFORCE 算法。在函数take_action()函数中,我们通过动作概率分布对离散的动作进行采样。在更新过程中,我们按照算法将损失函数写为策略回报的负数,即,对求导后就可以通过梯度下降来更新策略。


class REINFORCE:
    def __init__(self, state_dim, hidden_dim, action_dim, learning_rate, gamma,
                 device):
        self.policy_net = PolicyNet(state_dim, hidden_dim,
                                    action_dim).to(device)
        self.optimizer = torch.optim.Adam(self.policy_net.parameters(),
                                          lr=learning_rate)  # 使用Adam优化器
        self.gamma = gamma  # 折扣因子
        self.device = device
    def take_action(self, state):  # 根据动作概率分布随机采样
        state = torch.tensor([state], dtype=torch.float).to(self.device)
        probs = self.policy_net(state)
        action_dist = torch.distributions.Categorical(probs)
        action = action_dist.sample()
        return action.item()
    def update(self, transition_dict):
        reward_list = transition_dict['rewards']
        state_list = transition_dict['states']
        action_list = transition_dict['actions']
        G = 0
        self.optimizer.zero_grad()
        for i in reversed(range(len(reward_list))):  # 从最后一步算起
            reward = reward_list[i]
            state = torch.tensor([state_list[i]],
                                 dtype=torch.float).to(self.device)
            action = torch.tensor([action_list[i]]).view(-1, 1).to(self.device)
            log_prob = torch.log(self.policy_net(state).gather(1, action))
            G = self.gamma * G + reward
            loss = -log_prob * G  # 每一步的损失函数
            loss.backward()  # 反向传播计算梯度
        self.optimizer.step()  # 梯度下降


 定义好策略,我们就可以开始实验了,看看 REINFORCE 算法在车杆环境上表现如何吧!


learning_rate = 1e-3
num_episodes = 1000
hidden_dim = 128
gamma = 0.98
device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
    "cpu")
env_name = "CartPole-v0"
env = gym.make(env_name)
env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = REINFORCE(state_dim, hidden_dim, action_dim, learning_rate, gamma,
                  device)
return_list = []
for i in range(10):
    with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
        for i_episode in range(int(num_episodes / 10)):
            episode_return = 0
            transition_dict = {
                'states': [],
                'actions': [],
                'next_states': [],
                'rewards': [],
                'dones': []
            }
            state = env.reset()
            done = False
            while not done:
                action = agent.take_action(state)
                next_state, reward, done, _ = env.step(action)
                transition_dict['states'].append(state)
                transition_dict['actions'].append(action)
                transition_dict['next_states'].append(next_state)
                transition_dict['rewards'].append(reward)
                transition_dict['dones'].append(done)
                state = next_state
                episode_return += reward
            return_list.append(episode_return)
            agent.update(transition_dict)
            if (i_episode + 1) % 10 == 0:
                pbar.set_postfix({
                    'episode':
                    '%d' % (num_episodes / 10 * i + i_episode + 1),
                    'return':
                    '%.3f' % np.mean(return_list[-10:])
                })
            pbar.update(1)
-------------------------------------------------------------------------------------------
Iteration 0: 100%|███████████████████████████████████████| 100/100 [00:02<00:00, 47.36it/s, episode=100, return=55.500]
Iteration 1: 100%|███████████████████████████████████████| 100/100 [00:04<00:00, 21.26it/s, episode=200, return=75.300]
Iteration 2: 100%|██████████████████████████████████████| 100/100 [00:09<00:00, 10.55it/s, episode=300, return=178.800]
Iteration 3: 100%|██████████████████████████████████████| 100/100 [00:11<00:00,  8.74it/s, episode=400, return=164.600]
Iteration 4: 100%|██████████████████████████████████████| 100/100 [00:11<00:00,  8.74it/s, episode=500, return=156.500]
Iteration 5: 100%|██████████████████████████████████████| 100/100 [00:11<00:00,  8.54it/s, episode=600, return=187.400]
Iteration 6: 100%|██████████████████████████████████████| 100/100 [00:11<00:00,  8.52it/s, episode=700, return=194.500]
Iteration 7: 100%|██████████████████████████████████████| 100/100 [00:13<00:00,  7.57it/s, episode=800, return=200.000]
Iteration 8: 100%|██████████████████████████████████████| 100/100 [00:12<00:00,  7.84it/s, episode=900, return=200.000]
Iteration 9: 100%|█████████████████████████████████████| 100/100 [00:12<00:00,  7.89it/s, episode=1000, return=186.100]


 在 CartPole-v0 环境中,满分就是 200 分,我们发现 REINFORCE 算法效果很好,可以达到 200 分。接下来我们绘制训练过程中每一条轨迹的回报变化图。由于回报抖动比较大,往往会进行平滑处理。


episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('REINFORCE on {}'.format(env_name))
plt.show()
mv_return = rl_utils.moving_average(return_list, 9)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('REINFORCE on {}'.format(env_name))
plt.show()

a74a598c8c784583b7ae0b043e959f9c.png


 以看到,随着收集到的轨迹越来越多,REINFORCE 算法有效地学习到了最优策略。不过,相比于前面的 DQN 算法,REINFORCE 算法使用了更多的序列,这是因为 REINFORCE 算法是一个在线策略算法,之前收集到的轨迹数据不会被再次利用。此外,REINFORCE 算法的性能也有一定程度的波动,这主要是因为每条采样轨迹的回报值波动比较大,这也是 REINFORCE 算法主要的不足。


5. 小结


 REINFORCE 算法是策略梯度乃至强化学习的典型代表,智能体根据当前策略直接和环境交互,通过采样得到的轨迹数据直接计算出策略参数的梯度,进而更新当前策略,使其向最大化策略期望回报的目标靠近。这种学习方式是典型的从交互中学习,并且其优化的目标(即策略期望回报)正是最终所使用策略的性能,这比基于价值的强化学习算法的优化目标(一般是时序差分误差的最小化)要更加直接。 REINFORCE 算法理论上是能保证局部最优的,它实际上是借助蒙特卡洛方法采样轨迹来估计动作价值,这种做法的一大优点是可以得到无偏的梯度。但是,正是因为使用了蒙特卡洛方法,REINFORCE 算法的梯度估计的方差很大,可能会造成一定程度上的不稳定,这也是第 10 章将介绍的 Actor-Critic 算法要解决的问题。


6. 扩展:策略梯度证明


策略梯度定理是强化学习中的重要理论。本节我们来证明


image.png


先从状态价值函数的推导开始:


image.png


 为了简化表示,我们让 ϕ ( s ) = ∑ a ∈ Aθ π θ ( a ∣ s ) Q π θ ( s , a )  定义 d π θ ( s → x , k ) 为策略 π 从状态 s 出发 k 步后到达状态 x 的概率。我们继续推导:


image.png






定义image.png 。至此,回到目标函数:


image.png


 证明完毕 !


相关资源来自:伯禹学习平台-动手学强化学习


35f0c043b96a4143bb9612b6bc0f1c4b.png

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
多代理强化学习综述:原理、算法与挑战
多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益;在某些环境中,这些利益可能与其他代理的利益相冲突,从而产生复杂的群体动态。
260 5
|
5天前
|
机器学习/深度学习 算法
强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法
Richard Sutton领导的团队提出了一种称为“奖励中心化”的方法,通过从观察到的奖励中减去其经验平均值,使奖励更加集中,显著提高了强化学习算法的性能。该方法在解决持续性问题时表现出色,尤其是在折扣因子接近1的情况下。论文地址:https://arxiv.org/pdf/2405.09999
30 15
|
23天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
23天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
1月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
4月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
70 1
|
4月前
|
机器学习/深度学习 存储 算法
强化学习实战:基于 PyTorch 的环境搭建与算法实现
【8月更文第29天】强化学习是机器学习的一个重要分支,它让智能体通过与环境交互来学习策略,以最大化长期奖励。本文将介绍如何使用PyTorch实现两种经典的强化学习算法——Deep Q-Network (DQN) 和 Actor-Critic Algorithm with Asynchronous Advantage (A3C)。我们将从环境搭建开始,逐步实现算法的核心部分,并给出完整的代码示例。
335 1
|
4月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
57 0
|
16天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
下一篇
DataWorks