1370亿参数、接近人类水平,谷歌对话AI模型LaMDA放出论文

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
NLP 自学习平台,3个模型定制额度 1个月
简介: 1370亿参数、接近人类水平,谷歌对话AI模型LaMDA放出论文

语言模型可以完成不同任务,例如将一种语言翻译成另一种语言,将长文档总结为简短的摘要等。在众多任务中,开放域对话可能是最困难的任务之一,因为开放域对话需要模型覆盖不同的主题。在对话任务中,模型应该遵循负责任 AI(Responsible AI)实践,并避免做出没有外部信息源支持的事实陈述。

近日,超过 50 多位谷歌研究者参与撰写的论文《 LaMDA: Language Models for Dialog Applications 》介绍了语言模型 LaMDA 的最新进展。论文概括了他们如何在安全、可靠和高质量的对话应用程序方面取得进展。LaMDA 通过微调一系列专门用于对话的、基于 Transformer 的神经语言模型构建的,具有多达 137B 个参数,模型还可以利用外部知识源进行对话。


论文地址:https://arxiv.org/pdf/2201.08239.pdf

来自谷歌大脑的论文作者之一 Romal Thoppilan 表示:LaMDA 模型使用多达 137B 个参数进行训练,它展示了接近人类水平的对话质量以及在安全性和事实基础方面具有显着改进。


目标和度量

指导训练对话模型包括两个至关重要的因素:目标和度量。LaMDA 有三个主要目标——质量、安全和根基性(Groundedness)。

质量:谷歌将质量分解为三个维度,即合理性、特异性和趣味性 (Sensibleness, Specificity, Interestingness,SSI),由人类评估者进行评估。

  • 合理性是指模型是否产生在对话上下文中有意义的响应(例如,没有常识错误,没有荒谬的回应,以及与先前的回应没有矛盾);
  • 特异性是通过判断系统的响应是否特定于前面的对话上下文来衡量的,而不是适用于大多数上下文的通用回应;
  • 趣味性是衡量模型是否产生了富有洞察力、出乎意料或机智的回应,因此更有可能创造更好的对话。


安全:谷歌还在开发和部署负责任 AI(Responsible AI)方面取得了重大进展。其安全度量由一组说明性的安全目标组成,这些目标捕捉模型应在对话中展示的行为。这些目标试图限制模型的输出,以避免任何可能对用户造成伤害的意外结果,并避免加剧不公平的偏见。

根基性:当前这一代语言模型通常会生成看似合理但实际上与已知外部事实相矛盾的陈述。这激发了谷歌对 LaMDA 根基性的研究。不携带任何真实世界信息的随意回应都会影响信息性,但不会影响根基性。虽然在已知来源中建立 LaMDA 生成的响应本身并不能保证事实的准确性,但它允许用户或外部系统根据其来源的可靠性来判断响应的有效性。

LaMDA 预训练与微调

在定义了目标和度量之后,谷歌描述了 LaMDA 的两阶段训练:预训练和微调。

LaMDA 预训练

在预训练阶段,谷歌首先从公共对话数据和其他公共网页文档中收集并创建了一个具有 1.56T 单词的数据集,是用于训练以往对话模型的单词量的近 40 倍。在将该数据集标记为 2.81T SentencePiece token 之后,谷歌使用 GSPMD 预训练模型,以预测句子中的所有下一个 token。预训练的 LaMDA 模型已被广泛应用于谷歌的自然语言处理研究中,包括程序合成、零样本学习、风格迁移等。

LaMDA 微调

在微调阶段,谷歌训练 LaMDA,执行混合生成任务以生成对给定上下文的自然语言响应,执行关于响应是否安全和高质量的分类任务,最终生成一个两种任务都能做的多任务模型。LaMDA 生成器被训练预测限制为两个作者之间来回对话的对话数据集上的下一个 token,LaMDA 分类器被训练预测使用注释数据在上下文中生成的响应的安全与质量(SSI)评级。

对话期间,LaMDA 生成器首先在给定当前多轮对话上下文时生成几个候选响应,然后 LaMDA 预测每个候选响应的 SSI 和安全分数。安全分数低的候选响应首先被过滤掉,剩下的候选响应根据 SSI 分数重新排名,并选择分数最高的作为最终响应。谷歌使用 LaMDA 分类器进一步过滤掉用于生成任务的训练数据,以增加高质量候选响应的密度。

LaMDA 生成一个候选响应并对其评分。


LaMDA 通过合理、特异和有趣的方式处理任意用户输入。

事实根基

虽然人们能够使用工具并参考已建立的知识库来检测事实,但很多语言模型仅利用内部模型参数来获取知识。为了提高 LaMDA 原始响应的根基性,谷歌收集并创建了人类与 LaMDA 之间对话的数据集,这些对话在适用的情况下使用检索查询和检索结果进行注释。然后,谷歌在这个数据集上微调了 LaMDA 的生成器和分类器,以学习与用户交互期间调用外部信息检索系统,并提升响应的根基性。虽然这一工作还处于非常早期的阶段,但谷歌看到了有希望的结果。

零样本域自适应:看起来非常真实的假装是珠穆朗玛峰的 LaMDA 对话示例。结果表明,对话主体「珠穆拉玛峰」提供了教育性和事实正确的响应。

评估

为了根据自己的关键度量来量化进展,谷歌收集来自预训练模型、微调模型、人类评估者(即人类生成的响应)对多轮双作者对话的响应,然后向不同的人类评估者问一系列问题,从而根据质量、安全性和根基性度量来评估这些响应。

谷歌观察到,LaMDA 在每个维度和所有模型大小情况下都显著优于预训练模型,合理性、特异性和趣味性等质量度量通常会随模型参数量提升,无论微调与否。安全性似乎无法仅从模型缩放中收益,但确实可以通过微调提升。随着模型大小的增加,根基性也提升,这或许是因为更大的模型具备更大的记住不常见知识的能力,但微调使模型可以访问外部知识源并有效地将记住知识的负载转移到外部知识源。微调还可以缩小与人类水平的质量差距,尽管该模型在安全性和根基性方面的性能依然低于人类。


在合理性、特异性、趣味性、安全性、根基性和信息性等方面比较预训练模型(PT)、微调模型(LaMDA)和人类评估者生成对话(Human)。


原文链接:https://ai.googleblog.com/

相关文章
|
24天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
70 2
|
9天前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
36 6
|
16天前
|
人工智能 机器人 API
【通义】AI视界|谷歌Q3财报:Gemini API六个月增长14倍,公司超25%的新代码由AI生成
本文内容由通义自动生成,涵盖谷歌Q3财报、马斯克xAI融资、九巨头联盟挑战英伟达、Meta加大AI投入及麻省理工研究LLM与人脑相似性等热点资讯。更多精彩内容,请访问通通知道。
|
15天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
35 4
|
15天前
|
人工智能 自然语言处理 算法
【通义】AI视界|OpenAI最新发布!ChatGPT搜索功能强势来了,挑战谷歌?
本文由【通义】自动生成,精选24小时内的重要资讯:OpenAI推出ChatGPT搜索功能挑战谷歌,微软披露130亿美元投资OpenAI,Reddit首次盈利股价暴涨20%,软银CEO孙正义看好英伟达及“超级AI”前景,谷歌云与沙特PIF共建全球AI中心。更多内容请访问通通知道。
|
25天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
62 6
|
23天前
|
人工智能 安全 芯片
【通义】AI视界|谷歌 Tensor G5 芯片揭秘:1+5+2 八核 CPU,支持光线追踪
本文由【通义】自动生成,涵盖黄仁勋宣布台积电协助修复Blackwell AI芯片设计缺陷、苹果分阶段推出Apple Intelligence、OpenAI保守派老将辞职、英伟达深化与印度合作推出印地语AI模型,以及谷歌Tensor G5芯片支持光线追踪等最新科技资讯。点击链接或扫描二维码,获取更多精彩内容。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
11 1
|
1天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
16 10
|
2天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。