基于大规模MIMO的MMSE-AMPT信号检测算法的误码率仿真

简介: 基于大规模MIMO的MMSE-AMPT信号检测算法的误码率仿真

1.算法仿真效果
matlab2022a仿真结果如下:

74aff64fab0320df247538830bd7190a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    MIMO(Multiple-Input Multiple-Output)技术,即多入多出技术,指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。

   在4G通信中,MIMO天线数量较少,多为4个或者8个,天线数量少就限制了4G网络的通信容量。5G在4G研究的基础上,提出了大规模MIMO(massive MIMO)的概念,就是在基站端安装几百根天线(128根、256根或者更多),从而实现几百个天线同时发数据,而理论上的通信容量则是无限的。

   大规模MIMO技术指基站天线数目庞大,而用户终端采用单天线接收的通信方式,可作为目前移动通信系统的一种平滑的过渡方式,即不必大面积更新用户的终端设备,通过对基站的改造,提高系统的频谱利用率。

大规模MIMO的优点:

第一、大规模MIMO的空间分辨率与现有MIMO相比显著增强,能深度挖掘空间维度资源,使得网络中的多个用户可以在同一时频资源上利用大规模MIMO提供的空间自由度与基站同时进行通信,从而在不需要增加基站密度和带宽的条件下大幅度提高频谱效率。

第二、大规模MIMO可将波束集中在很窄的范围内,从而大幅度降低干扰。

第三、当天线数量足够大时,最简单的线性预编码和线性检测器趋于最优,并且噪声和不相关干扰都可忽略不计。

第四、可大幅降低发射功率,从而提高功率效率。

   随着移动数据业务量爆发式增加,传统的多输入多输出技术(multiple-input multiple-output,MIMO)因其仅能提供4×4或者8×8天线规模的系统而显得力不从心,大规模MIMO技術应运而生。大规模MIMO系统指在基站端配置多达几十甚至数百根天线阵列同时服务于多个单天线用户终端,大大提高了系统的频谱和能量效率。但是,随着天线数量的增加,大规模MIMO系统也面临一些问题,如何实现高效可靠的上行链路信号检测就是其中之一。

    随着基站端天线数量的大幅度增加,信道之间逐渐趋于正交,基于这个特性,线性检测算法如最小均方误差(minimum mean square error,MMSE)等在大规模MIMO系统中也具有很好的性能[6-7]。但是,这些线性检测算法涉及复杂的矩阵求逆运算从而导致复杂度过高[。为降低矩阵求逆带来的计算复杂度,采用Neumann级数展开算法用于信号检测,但当迭代次数大于2时,其计算复杂度又回到[O(k3)],且当基站端天线和用户天线数量之比接近1时,会带来明显的BER性能损失[9]。GAO X[10]提出了Richardson迭代算法,但在迭代参数计算量较大且迭代次数较低时算法性能很差。TANG C[11]和DAI L提出了Gauss-Seidel算法和Newton算法,它更多地关注精度,所以计算复杂度也较大。


3.MATLAB核心程序

m=64;
SNR_range=[0:2:20]; 
count=0;
 
for SNR=SNR_range
for monte=1:5000
    [SNR,monte]
    H=randn(m,n); %channel matrix
    A=7;% size of constellations
    u=1*randi([-A,A],n,1);% symbols in users 
    
    sigmas2=A*(A+1)/3;              % theoretical signal power;  
    sigma2=sigmas2/((10^(SNR/10))); % noise power
    y=H*u+sqrt(sigma2)*randn(m,1);  %the received signal
 
     for j=1:3
          switch j
             case 1 %  MMSE
            xhat=round(pinv([H;sigma2/sigmas2*eye(n)])*[y;zeros(n,1)]);
            x_mmse=xhat;
             case 2 % MMSE-AMPT
            yp=y-H*x_mmse; %yp is the difference vector
            xhat=x_mmse+AMPT(yp,H,.5,.5); % AMP with ternery priors
             case 3  % MMSE-AMPG
            yp=y-H*x_mmse;
            xhat=x_mmse+AMPG(yp,H,sigmas2/20,.5);% AMP with Gaussian priors;the signal power is unknown
          end   
        uhat=max(min(xhat,A*ones(n,1)),-A*ones(n,1));%estimated symbols
        ser(j,monte)=sum(u~=uhat)/n; % symbol error rate    
     end
end
    count=count+1;
    SER(:,count)=mean(ser,2);
end
 
相关文章
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
4天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
|
2天前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
84 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
6天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
9天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
10天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
8天前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。

热门文章

最新文章