1.算法仿真效果
vivado2019.2/matlab2022a仿真结果如下:
对比matlab仿真结果如下:
可以看到编码后的结果和matlab的编码结果完全相同。
2.算法涉及理论知识概要
viterbi译码算法是一种卷积码的解码算法。优点不说了。缺点就是随着约束长度的增加算法的复杂度增加很快。约束长度N为7时要比较的路径就有64条,为8时路径变为128条。 (2<<(N-1))。所以viterbi译码一般应用在约束长度小于10的场合中。
先说编码(举例约束长度为7):编码器7个延迟器的状态(0,1)组成了整个编码器的64个状态。每个状态在编码器输入0或1时,会跳转到另一个之中。比如110100输入1时,变成101001(其实就是移位寄存器)。并且输出也是随之而改变的。
这样解码的过程就是逆过程。算法规定t时刻收到的数据都要进行64次比较,就是64个状态每条路有两条分支(因为输入0或1),同时,跳传到不同的两个状态中去,将两条相应的输出和实际接收到的输出比较,量度值大的抛弃(也就是比较结果相差大的),留下来的就叫做幸存路径,将幸存路径加上上一时刻幸存路径的量度然后保存,这样64条幸存路径就增加了一步。在译码结束的时候,从64条幸存路径中选出一条量度最小的,反推出这条幸存路径(叫做回溯),得出相应的译码输出。
卷积码是把k个信息比特的序列编成n个比特的码组,每个码组的n-k个校验位与本码组的k个信息位有关,而与其他码组无关。为了达到一定的纠错能力和编码效率,分组码的长度一般都比较大。编译码时必须把整个信息码组存储起来,由此产生的译码延时随n的增加而增加。
卷积码是一个有限记忆系统,它也将信息序列分割成长度k的一个个分组,然后将k个信息比特编成n个比特,但k和n通常很小,特别适合以串行形式进行传输,时延小。与分组码不同的是在某一分组编码时,不仅参看本时刻的分组而且参看以前的N-1个分组,编码过程中互相关联的码元个数为nN。N称为约束长度。常把卷积码写成(n,k,N-1)卷积码。正因为卷积码在编码过程中,充分利用了各级之间的相关性,无论是从理论上还是实际上均已证明其性能要优于分组码。
本次设计以(2,1,2)卷积码为例。图2-1为这种卷积编码器的结构,它的编码方法是:序列依次移入一个两级移位寄存器,编码器每输入一位信息b,输出端的开关就在c和c之间来回切换一次,输出为c和c,其中
要使最后1 位输入同样影响3对输出,并且使编码器回到全零状态,还需使编码器多输出2对信息,为了做到这一点,需要增加2个时钟循环,并且在此期间保持输入为0,这一过程叫做“点亮”编码器。如果不执行“点亮”操作,最后2位输入信息的纠错能力就会下降。
因为卷积码的编码器的记忆性是有限的,所以可以使用状态转移图来表示其转移过程。在状态转移图中,卷积编码器的每一个状态对应于一个椭圆,状态的转移用两个椭圆间的有向线段表示,在线上标出状态转移的输入和对应的输出。图中(2,1,2)卷积码的状态转移图如图所示。
3.verilog核心程序
if val_a + dis(gra(1,:), x(2*i-1:2*i)) >= val_c + dis(gra(5,:),x(2*i-1:2*i))
tempa = mc;
val_a_t = val_c + dis(gra(5,:),x(2*i-1:2*i));
tempa(i)=0;
else
val_a_t = val_a + dis(gra(1,:),x(2*i-1:2*i));
tempa = ma;
tempa(i)=0;
end
.....................................................................
val_a =val_a_t;
val_b =val_b_t;
val_c =val_c_t;
val_d =val_d_t;
ma = tempa;
mb = tempb;
mc = tempc;
md = tempd;
end
if val_a <= val_b
m = ma;
t = val_a;
else
m = mb;
t = val_a;
end
if val_c <= t
m = mc;
t =val_c;
end
if val_d <= t
m = md;
t = val_d;
end
%% 去掉最开始的00
m = m(3:s+2);
end