用Transformer定义所有ML模型,特斯拉AI总监Karpathy发推感叹AI融合趋势

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 用Transformer定义所有ML模型,特斯拉AI总监Karpathy发推感叹AI融合趋势


特斯拉 AI 总监 Andrej Karpathy 连发多条推文表示,AI 不同领域(视觉、语音、自然语言等)正在打通,融合速度令人惊叹。


今日,特斯拉 AI 总监、Autopilot Vision 团队领导人 Andrej Karpathy 在推特上发文,对 AI 领域正在进行中的融合(consolidation)表示惊叹。

他表示,「10 年前,视觉、语音、自然语言、强化学习等都是完全分离的,甚至没有跨领域的论文。方法也完全不同,通常不是基于机器学习。」

从 2010 年开始,视觉、语言、自然语言、强化学习等领域的壁垒逐渐打破,它们开始转向同一个技术方向,即机器学习,特别是神经网络。它们使用的网络架构具有多样性,但至少论文开始读起来更加相似,基本上都用到了大型数据集和网络优化。

随着 AI 技术的发展,近两年,不同领域模型架构似乎也变得相同起来。很多研究者开始专注于 Transformer 架构,在此基础上做较小的改动以进行研究。

例如 2018 诞生的 GPT,1.17 亿参数;2019 年 GPT-2,15 亿参数;2020 年更是将其扩展到 1750 亿参数 GPT-3。Karpathy 基于 PyTorch,仅用 300 行左右的代码就写出了一个小型 GPT 训练库,并将其命名为 minGPT,这个 minGPT 能够进行加法运算和字符级的语言建模,而且准确率还不错。核心的 minGPT 库包含两个文档:mingpt/model.py 和 mingpt/trainer.py。前者包含实际的 Transformer 模型定义,大约 200 行代码,后者是一个与 GPT 无关的 PyTorch 样板文件,可用于训练该模型。

部分代码截图。

197 行完整代码:https://github.com/karpathy/minGPT/blob/master/mingpt/model.py

随着模型架构的融合,现在,我们可以向模型输入词序列、图像 patch 序列、语音序列、强化学习序列(状态、行为、奖励)。我们可以在条件设置中添加任意 token,这种模式是极其简单、灵活的建模框架。

即使是在某个领域(如视觉)内部,过去在分类、分割、检测和生成任务上存在一些差异。但是,所有这些也正在转换为相同的框架,例如 patch 的检测 take 序列和边界框的输出序列。

现在,区别性特征主要包括以下几个方面:

1)数据2)将自身问题映射到向量序列以及从向量序列映射出自身问题的输入 / 输出规范3)位置编码器的类型以及注意力 mask 中针对特定问题的结构化稀疏模式

所以,从技术上来说,AI 领域的方方面面,包括前景、论文、人才和想法突然之间变得极其相关。每个人基本上都在使用相同的模型,大多数改进和想法可以快速地在所有 AI 领域「复制粘贴」(copy paste)。

正如其他很多人注意到并指出的那样,新大脑皮质(neocortex)在其所有的输入模态中也有一个高度统一的架构。也许自然界偶然发现了一个非常相似的强大架构,并以类似的方式复制了它,并只在一些细节上做了改变。

这种架构上的融合将使我们专注于软硬件和基础设施建设,进一步加速 AI 领域的进展。「无论如何,这是激动人心的时刻。」

对于 Andrej Karpathy 描述的 AI 融合趋势,网友也纷纷发表意见。

推特网友 @Neural Net Nail 表示,「这是一个有价值的见解。融合将加速 AI 领域的创新步伐,在边缘端使用 AI 的尖端产品变得更加可行。我想,变化(variation)才是质量的最大敌人。」

网友 @sisil mehta 也认为,「ML 基础设施迎来了激动人心的时刻。随着模型架构的融合,建模框架和基础设施也将融合。我当然希望 PyTorch Lightning 也会这样。」

网友 @Marcos Pereira 表示,「一方面,处处都在用 transformers,我们已经遇到了障碍,需要创新;另一方面,处处都在用 transformers,所以跟上来吧。」

原文出自 @Andrej Karpathy 的推特:https://twitter.com/karpathy/status/1468370605229547522

相关文章
|
6月前
|
机器学习/深度学习 人工智能 自动驾驶
【通义】AI视界|马斯克:特斯拉计划2025年末批量装备AI训练芯片Dojo2
本文精选了24小时内的重要AI新闻,包括特斯拉计划2025年批量装备Dojo 2芯片、英伟达股价大涨、谷歌联合创始人积极参与AI项目、中科院女工程师开源AI模型保护女性,以及快手旗下可灵AI与蓝色光标达成战略合作。更多内容敬请访问通义官网体验。
|
6月前
|
人工智能 自然语言处理 自动驾驶
【通义】AI视界|马斯克亲自辟谣:xAI不可能在特斯拉的推理计算机上运行
本文精选了24小时内的重要科技新闻,包括马斯克辟谣xAI不会运行在特斯拉计算机上、谷歌发布AlphaProteo AI模型、百度贴吧“弱智吧”成为AI训练佳选、荣耀推出跨应用智能体以及苹果即将在iOS 18.2中加入图像生成功能。更多内容请访问通义官网体验。
|
8月前
|
机器学习/深度学习 存储 人工智能
AI大咖说-李飞飞高徒/特斯拉前AI总监出的最新AI课程
今天要推荐一位AI界的大神Andrej Karpathy的几门大模型的开源项目和课程,希望对你有帮助【7月更文挑战第1天】
198 0
|
10月前
|
人工智能 机器人 UED
特斯拉手机应用上线AI聊天助手:特斯拉助手Beta版
【2月更文挑战第11天】特斯拉手机应用上线AI聊天助手:特斯拉助手Beta版
228 1
特斯拉手机应用上线AI聊天助手:特斯拉助手Beta版
|
机器学习/深度学习 人工智能 自动驾驶
特斯拉Dojo超算:AI训练平台的自动驾驶与通用人工智能之关键
特斯拉Dojo超算平台代表了特斯拉在AI领域的重大突破。它不仅提供了海量的计算能力以支持特斯拉的自动驾驶和通用人工智能研究,而且还通过自主研发、大规模可扩展性和高效率等特点,完美地融入了特斯拉的各项业务中。未来,随着特斯拉不断扩展其业务领域和市场范围,Dojo超算平台的重要性将进一步提升。同时,我们期待看到特斯拉继续优化其Dojo超算平台,以支持其在AI领域的更多创新和突破。
354 0
|
机器学习/深度学习 人工智能 自然语言处理
特斯拉AI总监:我复现了LeCun 33年前的神经网络,发现和现在区别不大
特斯拉AI总监:我复现了LeCun 33年前的神经网络,发现和现在区别不大
|
机器学习/深度学习 人工智能 自然语言处理
用Transformer定义所有ML模型,特斯拉AI总监Karpathy发推感叹AI融合趋势
用Transformer定义所有ML模型,特斯拉AI总监Karpathy发推感叹AI融合趋势
197 0
|
机器学习/深度学习 人工智能 缓存
从特斯拉 AI 团队学到的九条方法论
尽管 OpenAI 以其在自然语言处理上的成就而著称,而 DeepMind 则以强化学习和决策而闻名,特斯拉(Tesla)无疑是计算机视觉领域最有影响力的公司之一。即便你不是计算机视觉专业人士,你也可以通过特斯拉了解到不少它的生产级人工智能。
306 0
从特斯拉 AI 团队学到的九条方法论
|
机器学习/深度学习 人工智能 分布式计算
500亿晶体管,Dojo芯片细节发布!特斯拉ExaPOD将炼成「全球最快AI计算机」
上周特斯拉举办AI日,除了发布机器人,还公布了其自研的D1芯片。凭借这款芯片,特斯拉打造出了最快的 AI 训练计算机ExaPOD。
267 0
500亿晶体管,Dojo芯片细节发布!特斯拉ExaPOD将炼成「全球最快AI计算机」
|
人工智能 安全 自动驾驶
黄仁勋愿助特斯拉自研AI芯片,马斯克:谢谢,不用!
近日,英伟达CEO黄仁勋向特斯拉抛出橄榄枝,表示若特斯拉有需求,英伟达愿助其一臂之力。特斯拉CEO马斯克就此作出回复。
1551 0

热门文章

最新文章