纯Python实现Torch API,康奈尔副教授为自己的课程创建了DIY教学库

简介: 纯Python实现Torch API,康奈尔副教授为自己的课程创建了DIY教学库

机器之心报道

编辑:杜伟

该项目是为纽约校区 Cornell Tech 的「机器学习工程」课程开发的。


近日,机器之心在 GitHub 上发现了一个 DIY 教学库——MiniTorch,该库适用于希望了解深度学习(DL)系统底层实质概念的机器学习工程师。

MiniTorch 是一个 Torch API 的纯 Python 重新实现,展示了从零开始构建一个张量和自动微分库。最终得到的库能够运行 Torch 代码。


项目地址:https://github.com/minitorch/minitorch

项目创建者为康奈尔大学副教授(pre-tenure)Alexander Rush,该项目是为纽约校区 Cornell Tech 的「机器学习工程」课程开发的。这是一门硕士课程,涵盖了训练、调整、调试、可视化和部署 ML 系统中的系统级问题。


在开始构建库之前,用户首先需要根据 Setup 的步骤创建自己的工作区域(workspace)。

Setup 地址:https://minitorch.github.io/setup

然后,按照如下顺序创建必要的模块:

模块 0:Fundamental模块 1:Autodiff模块 2:Tensors模块 3:Efficiency模块 4:Networks

项目需要极少的计算资源。用户可在 GitHub 上找到模块启动代码,并且每个模块都从前面的模块中获得增益。

模块 0:Fundamentals

Fundamentals 一个入门模块,主要介绍了几种用于之后模块中测试和调试的核心技术,也涵盖了一些基础的数学基础。用户在这个模块中将开始构建 MiniTorch 的一些基础设施。


所有的启动代码可见:https://github.com/minitorch/Module-0

此外,每个模块有一组指南(Guides)来帮助完成这些任务。

模块 1:Autodiff

Autodiff 是在模块 0 的基础上构建的,向用户展示了如何仅使用标量(scalar)值来创建 MiniTorch 的第一个版本(mini-MiniTorch),涵盖了系统中的关键技术——自动微分。然后,用户即可以使用代码训练一个原始模型。


所有的启动代码可见:https://github.com/minitorch/Module-1

开始前,记得首先要激活自己的虚拟环境,然后 clone 配置:


模块 2:Tensors

现在已经有了一个围绕标量构建的完全开发的自动微分系统。但是,该系统在训练期间效率低下。每个标量值需要构建一个对象,并且每个操作需要存储之前创建的所有值的图。训练需要重复上述操作,运行线性模型等模型需要对网络中的每个项进行 for 循环。

Tensors 模块引入和实现的一个张量(tensor)对象可以解决这些问题。张量将很多重复的操作组合在一起,以节省 Python 开销并将组合后的操作传递给更快的实现。


所有启动器代码可见:https://github.com/minitorch/Module-2

开始前,用户依然首先要激活虚拟环境,然后 clone 配置:


模块 3:Efficiency

除了有助于简化代码之外,张量还为加速计算提供了基础。事实上,它们确实是使用 Python 等慢速语言高效编写深度学习代码的唯一方法。然而,到目前为止,我们所做的一切都没有比基本面更快。该模块专注于利用张量编写快速代码,首先在标准 CPU 上,然后使用 GPU。

所有启动器代码可见:https://github.com/minitorch/Module-3

同模块 1 和模块 2 一样,用户需要首先激活虚拟环境,然后 clone 配置:



模块 4:Networks


我们现在拥有一个功能齐全的深度学习库,具有像 Torch 这样的真实工业系统的大部分功能。为了利用这项艰苦的工作,该模块完全基于使用软件框架。特别是,我们将构建一个图像识别系统。我们将通过为 MNIST 上的 LeNet 版本构建基础架构来实现这一点:用于数字识别的经典卷积神经网络 (CNN),以及用于 NLP 情感分类的 1D conv。


所有启动器代码可见:https://github.com/minitorch/Module-4

用户依然需要激活虚拟环境,并 clone 配置:



此外,用户还需要安装和下载一个 MNIST 库。注意,Mac OS 用户可能需要安装 wget 来运行. sh 文件。


这样会在模块中添加一个 data / 目录。用户可以尝试用以下代码对安装进行测试:


基于Python,利用 NVIDIA TAO Toolkit 和 Deepstream 快速搭建车辆信息识别系统


NVIDIA TAO Toolkit是一个AI工具包,它提供了AI/DL框架的现成接口,能够更快地构建模型,而不需要编码。

DeepStream是一个用于构建人工智能应用的流媒体分析工具包。它采用流式数据作为输入,并使用人工智能和计算机视觉理解环境,将像素转换为数据。

DeepStream SDK可用于构建视觉应用解决方案,用于智能城市中的交通和行人理解、医院中的健康和安全监控、零售中的自助检验和分析、制造厂中的组件缺陷检测等

12月14日19:30-21:00,本次分享摘要如下:

  • 介绍 TAO Toolkit 的最新特性;
  • 介绍 NVIDIA Deepstream 的最新特性;
  • 利用 TAO Toolkit 丰富的预训练模型库,快速训练模型;
  • 直接利用 TAO Toolkit 的预训练模型和 Deepstream 部署应用;
  • 完成对车辆车牌的检测和识别,并对行人以及车辆的品牌,颜色,种类进行检测。
相关文章
|
4天前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
29 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
28天前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
106 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
1月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
73 20
|
2月前
|
XML JSON 数据库
Python的标准库
Python的标准库
185 77
|
2月前
|
XML JSON 数据库
Python的标准库
Python的标准库
71 11
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
88 4
|
3月前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
226 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
3月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
198 4
数据分析的 10 个最佳 Python 库
|
3月前
|
机器人 API
随机昵称网名[百万昵称库]免费API接口教程
该API接口用于随机生成网名,适用于机器人昵称、虚拟用户名等场景。支持POST和GET请求,需提供用户ID和KEY。返回状态码及信息提示,示例如下:{"code":200,"msg":"豌豆公主"}。详情见官方文档:https://www.apihz.cn/api/zicisjwm.html

热门文章

最新文章

推荐镜像

更多