AI驱动运筹优化「光刻机」!中科大等提出分层序列模型,大幅提升数学规划求解效率|ICLR 2023

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: AI驱动运筹优化「光刻机」!中科大等提出分层序列模型,大幅提升数学规划求解效率|ICLR 2023



 新智元报道  

编辑:LRS 好困

【新智元导读】中科大王杰教授团队联合华为诺亚提出分层序列模型,AI驱动数学规划求解器,大幅提升求解效率!


数学规划求解器因其重要性和通用性,被誉为运筹优化领域的「光刻机」。


其中,混合整数线性规划 (Mixed-Integer Linear Programming, MILP) 是数学规划求解器的关键组件,可建模大量实际应用,如工业排产,物流调度,芯片设计,路径规划,金融投资等重大领域。


近期,中科大 MIRA Lab 王杰教授团队和华为诺亚方舟实验室联合提出分层序列模型(Hierarchical Sequence Model, HEM),大幅提升混合整数线性规划求解器求解效率,相关成果发表于ICLR 2023。


目前,算法已整合入华为 MindSpore ModelZoo 模型库,相关技术和能力并将于今年内整合入华为天筹(OptVerse)AI求解器。该求解器旨在将运筹学和AI相结合,突破业界运筹优化极限,助力企业量化决策和精细化运营,实现降本增效!


作者列表:王治海*,李希君*,王杰**,匡宇飞,袁明轩,曾嘉,张勇东,吴枫

论文链接:https://openreview.net/forum?id=Zob4P9bRNcK

开源数据集:https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing

PyTorch 版本开源代码:https://github.com/MIRALab-USTC/L2O-HEM-Torch

MindSpore 版本开源代码:https://gitee.com/mindspore/models/tree/master/research/l2o/hem-learning-to-cut

天筹(OptVerse)AI求解器:https://www.huaweicloud.com/product/modelarts/optverse.html


图1. HEM 与求解器默认策略(Default)求解效率对比,HEM 求解效率最高可提升 47.28%


1 引言


割平面(cutting planes, cuts)对于高效求解混合整数线性规划问题至关重要。


其中割平面选择(cut selection)旨在选择待选割平面的恰当子集以提高求解 MILP 的效率。割平面选择在很大程度上取决于两个子问题: (P1)应优先选哪些割平面,以及(P2)应选择多少割平面。


尽管许多现代 MILP 求解器通过手动设计的启发式方法来处理 (P1) 和 (P2),但机器学习方法有潜力学习更有效的启发式方法。


然而,许多现有的学习类方法侧重于学习应该优先选择哪些割平面,而忽略了学习应该选择多少割平面。此外,我们从大量的实验结果中观察到又一子问题,即(P3)应该优先选择哪种割平面顺序,对求解 MILP 的效率也有重大影响。


为了应对这些挑战,我们提出了一种新颖的分层序列模型(Hierarchical Sequence Model, HEM),并通过强化学习框架来学习割平面选择策略。


据我们所知,HEM 是首个可同时处理(P1),(P2)和(P3)的学习类方法。实验表明,在人工生成和大规模真实世界 MILP 数据集上,与人工设计和学习类基线相比,HEM 大幅度提高了求解 MILP 的效率。


2 背景与问题介绍


2.1 割平面(cutting planes, cuts)介绍


混合整数线性规划(Mixed-Integer Linear Programming, MILP)是一种可广泛应用于多种实际应用领域的通用优化模型,例如供应链管理 [1]、排产规划 [2]、规划调度 [3]、工厂选址 [4]、装箱问题 [5]等。


标准的MILP具有以下形式:


(1)


给定问题(1),我们丢弃其所有整数约束,可得到线性规划松弛(linear programming relaxation, LPR)问题,它的形式为:


(2)


由于问题(2)扩展了问题(1)的可行集,因此我们可有,即 LPR 问题的最优值是原 MILP 问题的下界。


给定(2)中的 LPR 问题,割平面(cutting planes, cuts)是一类合法线性不等式,这些不等式在添加到线性规划松弛问题中后,可收缩 LPR 问题中的可行域空间,且不去除任何原 MILP 问题中的整数可行解。


2.2 割平面选择(cut selection)介绍


MILP 求解器在求解 MILP 问题过程中可生成大量的割平面,且会在连续的回合中不断向原问题中添加割平面。


具体而言,每一回合中包括五个步骤:


(1)求解当前的 LPR 问题;

(2)生成一系列待选割平面;

(2)从待选割平面中选择一个合适的子集;

(4)将选择的子集添加到 (1) 中的 LPR 问题,以得到一个新的 LPR 问题;

(5)循环重复,基于新的 LPR 问题,进入下一个回合。


将所有生成的割平面添加到 LPR 问题中可最大程度地收缩该问题的可行域空间,以最大程度提高下界。


然而,添加过多的割平面可能会导致问题约束过多,增加问题求解计算开销并出现数值不稳定问题 [6,7]。


因此,研究者们提出了割平面选择(cut selection),割平面选择旨在选择候选割平面的适当子集,以尽可能提升 MILP 问题求解效率。割平面选择对于提高解决混合整数线性规划问题的效率至关重要 [8,9,10]。


2.3 启发实验——割平面添加顺序


我们设计了两种割平面选择启发式算法,分别为 RandomAll 和 RandomNV(详见原论文第3章节)。


它们都在选择了一批割平面后,以随机顺序将选择的割平面添加到 MILP 问题中。如图2结果显示,选定同一批割平面的情况下,以不同的顺序添加这些选定割平面对求解器求解效率有极大的影响(详细结果分析见原论文第3章节)。


图2. 每一个柱子代表在求解器中,选定相同的一批割平面,以10轮不同的顺序添加这些选定割平面,求解器最终的求解效率的均值,柱子中的标准差线代表不同顺序下求解效率的标准差。标准差越大,代表顺序对求解器求解效率影响越大。


3 方法介绍


在割平面选择任务中,应该选择的最优子集是不可事先获取的。


不过,我们可以使用求解器评估所选任意子集的质量,并以此评估作为学习算法的反馈。


因此,我们利用强化学习(Reinforcement Learning, RL)范式来试错学习割平面选择策略。


在本节中,我们详细阐述了我们提出的 RL 框架。


首先,我们将割平面选择任务建模为马尔科夫决策过程(Markov Decision Process, MDP);然后,我们详细介绍我们提出的分层序列模型(hierarchical sequence model, HEM);最后,我们推导可高效训练 HEM 的分层策略梯度。我们整体的 RL 框架图如图3所示。


图3. 我们所提出的整体 RL 框架图。我们将 MILP 求解器建模为环境,将 HEM 模型建模为智能体。我们通过智能体和环境不断交互采集训练数据,并使用分层策略梯度训练 HEM 模型。


3.1 问题建模


状态空间:由于当前的 LP 松弛和生成的待选 cuts 包含割平面选择的核心信息,我们通过定义状态。这里 表示当前 LP 松弛的数学模型, 表示候选割平面的集合,表示 LP 松弛的最优解。为了编码状态信息,我们根据的信息为每个待选割平面设计13个特征。也就是说,我们通过一个13维特征向量来表示状态 s。具体细节请见原文第4章节。


动作空间:为了同时考虑所选 cut 的比例和顺序,我们以候选割平面集合的所有有序子集定义动作空间。


奖励函数:为了评估添加 cut 对求解 MILP 的影响,我们可通过求解时间,原始对偶间隙积分(primal-dual gap integral),对偶界提升(dual bound improvement)。具体细节请见原文第4章节。


转移函数:转移函数给定当前状态和采取的动作,输出下一状态。割平面选择任务中转移函数隐式地由求解器提供。


更多建模细节请见原文第4章节。


3.2 策略模型:分层序列模型


如图3所示,我们将 MILP 求解器建模为环境,将 HEM 建模为智能体,下面详细介绍所提出的 HEM 模型。为了方便阅读,我们简化方法动机,聚焦于讲清楚方法实现,欢迎感兴趣的读者参见原论文第4章节,了解相关细节。


如图3中 Agent 模块所示,HEM 由上下层策略模型组成。上下层模型分别学习上层策略(policy) 和下层policy


首先,上层策略通过预测恰当的比例来学习应该选择的 cuts 的数量。假设状态长度为,预测比率为,那么预测应该选择的 cut 数为,其中表示向下取整函数。我们定义

其次,下层策略学习选择给定大小的有序子集。下层策略可以定义,其中表示给定状态和比例的动作空间上的概率分布。具体来说,我们将下层策略建模为一个序列到序列模型(sequence to sequence model, sequence model)。

最后,通过全概率定律推导出 cut 选择策略,即


3.3 训练方法:分层策略梯度


给定优化目标函数


(3)


我们基于策略梯度定理 [11],针对分层策略,推导出其适配的分层策略梯度,并以随机梯度下降的方式优化分层策略模型。如图3显示了分层策略梯度:


图4. 分层策略梯度。我们以此随机梯度下降的方式优化 HEM 模型。


4 实验介绍


我们的实验有五个主要部分:


实验1. 在3个人工生成的MILP问题和来自不同应用领域的6个具有挑战性的MILP问题基准上评估我们的方法。


实验2. 进行精心设计的消融实验,以提供对HEM的深入洞察。


实验3. 测试 HEM 针对问题规模的泛化性能。


实验4. 可视化我们的方法与基线所选择的割平面特点。


实验5. 将我们的方法部署到华为实际的排产规划问题中,验证 HEM 的优越性。


我们在此文章中只介绍实验1,更多实验结果,请参见原论文第5章节。请注意,我们论文中汇报的所有实验结果都是基于 PyTorch 版本代码训练得到的结果。


实验1结果如表1所示,我们在9个开源数据集上对比了 HEM 和6个基线的对比结果。实验结果显示,HEM 可平均提升约 20% 求解效率。


图5. 对easy、medium 和 hard 数据集的策略评估。最优性能我们用粗体字标出。以m表示约束条件的平均数量,n表示变量的平均数量。我们展示了求解时间和primal-dual gap 积分的算术平均值(标准偏差)。


参考资料:[1] Paschos, Vangelis Th, ed. Applications of combinatorial optimization. Vol. 3. John Wiley & Sons, 2014. [2] Jünger, Michael, et al., eds. 50 Years of integer programming 1958-2008: From the early years to the state-of-the-art. Springer Science & Business Media, 2009. [3] Chen, Zhi-Long. "Integrated production and outbound distribution scheduling: review and extensions." Operations research 58.1 (2010): 130-148.[4] Farahani, Reza Zanjirani, and Masoud Hekmatfar, eds. Facility location: concepts, models, algorithms and case studies. Springer Science & Business Media, 2009. [5] Nair, Vinod, et al. "Solving mixed integer programs using neural networks." arXiv preprint arXiv:2012.13349 (2020). [6] Wesselmann, Franz, and U. Stuhl. "Implementing cutting plane management and selection techniques." Technical Report. University of Paderborn, 2012. [7] Dey, Santanu S., and Marco Molinaro. "Theoretical challenges towards cutting-plane selection." Mathematical Programming 170 (2018): 237-266.[8] Tang, Yunhao, Shipra Agrawal, and Yuri Faenza. "Reinforcement learning for integer programming: Learning to cut." International conference on machine learning. PMLR, 2020.[9] Paulus, Max B., et al. "Learning to cut by looking ahead: Cutting plane selection via imitation learning." International conference on machine learning. PMLR, 2022. [10] Huang, Zeren, et al. "Learning to select cuts for efficient mixed-integer programming." Pattern Recognition 123 (2022): 108353. [11] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

相关文章
|
7天前
|
机器学习/深度学习 人工智能 PyTorch
模型手动绑骨3天,AI花3分钟搞定!UniRig:清华开源通用骨骼自动绑定框架,助力3D动画制作
UniRig是清华大学与VAST联合研发的自动骨骼绑定框架,基于自回归模型与交叉注意力机制,支持多样化3D模型的骨骼生成与蒙皮权重预测,其创新的骨骼树标记化技术显著提升动画制作效率。
150 27
模型手动绑骨3天,AI花3分钟搞定!UniRig:清华开源通用骨骼自动绑定框架,助力3D动画制作
|
5天前
|
机器学习/深度学习 人工智能 编解码
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
万相首尾帧模型是阿里通义开源的14B参数规模视频生成模型,基于DiT架构和高效视频压缩VAE,能够根据首尾帧图像自动生成5秒720p高清视频,支持多种风格变换和细节复刻。
135 7
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
|
5天前
|
人工智能 自然语言处理 监控
基于DeepSeek R1改进的AI安全模型!MAI-DS-R1:微软开源AI安全卫士,敏感话题响应率高达99.3%
微软开源的MAI-DS-R1是基于DeepSeek R1改进的AI模型,通过后训练优化将敏感话题响应率提升至99.3%,同时将有害内容风险降低50%,保持原版推理能力并增强多语言支持。
108 3
基于DeepSeek R1改进的AI安全模型!MAI-DS-R1:微软开源AI安全卫士,敏感话题响应率高达99.3%
|
3天前
|
存储 人工智能 边缘计算
当 AI 进入「算力密集时代」:你的服务器能跑通大模型吗?
本文深入探讨AI服务器在技术落地中的核心瓶颈问题,结合实战经验解析从模型训练到端侧部署的算力优化策略。内容涵盖三大典型场景的算力需求差异、GPU服务器选型的五大反直觉真相、实战优化方法(如混合精度训练与硬件资源监控),以及边缘AI部署挑战和解决方案。同时提供算力弹性扩展策略、模型生命周期管理及合规性建议,帮助读者构建可持续发展的算力体系。文末附有获取更多资源的指引。
51 17
|
7天前
|
数据采集 机器学习/深度学习 人工智能
面向 MoE 和推理模型时代:阿里云大数据 AI 产品升级发布
2025 AI 势能大会上,阿里云大数据 AI 平台持续创新,贴合 MoE 架构、Reasoning Model 、 Agentic RAG、MCP 等新趋势,带来计算范式变革。多款大数据及 AI 产品重磅升级,助力企业客户高效地构建 AI 模型并落地 AI 应用。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
如何利用AI简历优化工具提升招聘效率?HR必读指南
本文为HR提供如何利用AI简历优化工具提升招聘效率的实用指南。针对海量简历筛选难题,AI工具通过自然语言处理技术实现信息提取与智能分析,大幅提高筛选效率和精准度。文章解析了工具在数据驱动决策、多语言支持及动态评估模型上的优势,并提出科学应用框架,如岗位画像量化、分阶段筛选策略等。同时探讨未来智能化招聘趋势,强调人机协同的重要性,助力HR将精力转向更具创造性的工作,推动人力资源管理体系全面升级。
|
13天前
|
人工智能 自然语言处理 算法
阿里云 AI 搜索开放平台:从算法到业务——AI 搜索驱动企业智能化升级
本文介绍了阿里云 AI 搜索开放平台的技术的特点及其在各行业的应用。
104 3
|
14天前
|
缓存 PyTorch 算法框架/工具
AI Infra之模型显存管理分析
本文围绕某线上客户部署DeepSeek-R1满血版模型时进行多次压测后,发现显存占用一直上升,从未下降的现象,记录了排查过程。
187 41
AI Infra之模型显存管理分析
|
7天前
|
机器学习/深度学习 人工智能 算法
医学AI推理新突破!MedReason:这个AI把医学论文变「会诊专家」,8B模型登顶临床问答基准
MedReason是由多国顶尖学术机构联合开发的医学推理框架,通过知识图谱增强大模型在医疗领域的逻辑推理能力,其8B参数模型在复杂临床场景中达到最先进水平。
91 18
医学AI推理新突破!MedReason:这个AI把医学论文变「会诊专家」,8B模型登顶临床问答基准
|
7天前
|
人工智能 自然语言处理 JavaScript
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
Magnitude是一个基于视觉AI代理的开源端到端测试框架,通过自然语言构建测试用例,结合推理代理和视觉代理实现智能化的Web应用测试,支持本地运行和CI/CD集成。
104 15
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!

热门文章

最新文章