COCO转VOC代码:将coco格式的json文件转换为voc格式的xml文件

简介: COCO转VOC代码:将coco格式的json文件转换为voc格式的xml文件
from pycocotools.coco import COCO
import os
from lxml import etree, objectify
import shutil
from tqdm import tqdm
import sys
import argparse
# 将类别名字和id建立索引
def catid2name(coco):
    classes = dict()
    for cat in coco.dataset['categories']:
        classes[cat['id']] = cat['name']
    return classes
# 将标签信息写入xml
def save_anno_to_xml(filename, size, objs, save_path):
    E = objectify.ElementMaker(annotate=False)
    anno_tree = E.annotation(
        E.folder("DATA"),
        E.filename(filename),
        E.source(
            E.database("The VOC Database"),
            E.annotation("PASCAL VOC"),
            E.image("flickr")
        ),
        E.size(
            E.width(size['width']),
            E.height(size['height']),
            E.depth(size['depth'])
        ),
        E.segmented(0)
    )
    for obj in objs:
        E2 = objectify.ElementMaker(annotate=False)
        anno_tree2 = E2.object(
            E.name(obj[0]),
            E.pose("Unspecified"),
            E.truncated(0),
            E.difficult(0),
            E.bndbox(
                E.xmin(obj[1]),
                E.ymin(obj[2]),
                E.xmax(obj[3]),
                E.ymax(obj[4])
            )
        )
        anno_tree.append(anno_tree2)
    anno_path = os.path.join(save_path, filename[:-3] + "xml")
    etree.ElementTree(anno_tree).write(anno_path, pretty_print=True)
# 利用cocoAPI从json中加载信息
def load_coco(anno_file, xml_save_path):
    if os.path.exists(xml_save_path):
        shutil.rmtree(xml_save_path)
    os.makedirs(xml_save_path)
    coco = COCO(anno_file)
    classes = catid2name(coco)
    imgIds = coco.getImgIds()
    classesIds = coco.getCatIds()
    for imgId in tqdm(imgIds):
        size = {}
        img = coco.loadImgs(imgId)[0]
        filename = img['file_name']
        width = img['width']
        height = img['height']
        size['width'] = width
        size['height'] = height
        size['depth'] = 3
        annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
        anns = coco.loadAnns(annIds)
        objs = []
        for ann in anns:
            object_name = classes[ann['category_id']]
            # bbox:[x,y,w,h]
            bbox = list(map(int, ann['bbox']))
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[0] + bbox[2]
            ymax = bbox[1] + bbox[3]
            obj = [object_name, xmin, ymin, xmax, ymax]
            objs.append(obj)
        save_anno_to_xml(filename, size, objs, xml_save_path)
def parseJsonFile(data_dir, xmls_save_path):
    assert os.path.exists(data_dir), "data dir:{} does not exits".format(data_dir)
    if os.path.isdir(data_dir):
        # 这里注意修改
        data_types = ['train', 'val']
        for data_type in data_types:
            ann_file = 'instances_{}.json'.format(data_type)
            xmls_save_path = os.path.join(xmls_save_path, data_type)
            load_coco(ann_file, xmls_save_path)
    elif os.path.isfile(data_dir):
        anno_file = data_dir
        load_coco(anno_file, xmls_save_path)
if __name__ == '__main__':
    """
    脚本说明:
        该脚本用于将coco格式的json文件转换为voc格式的xml文件
    参数说明:
        data_dir:json文件的路径
        xml_save_path:xml输出路径
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--data-dir', type=str, default='./Task/cocome/annotations/instance_train.json', help='json path')
    parser.add_argument('-s', '--save-path', type=str, default='./Task/voc', help='xml save path')
    opt = parser.parse_args()
    print(opt)
    if len(sys.argv) > 1:
        parseJsonFile(opt.data_dir, opt.save_path)
    else:
    # 这里修改 coco的训练集json地址
        data_dir = './Task/cocome/annotations/instance_train.json'
    # 这里改成VOC xml文件的保存路径
        xml_save_path = './Task/voc'
        parseJsonFile(data_dir=data_dir, xmls_save_path=xml_save_path)


https://zhuanlan.zhihu.com/p/461488682

目录
相关文章
|
3月前
|
JSON 算法 vr&ar
目标检测笔记(五):查看通过COCOEvaluator生成的coco_instances_results.json文件的详细检测信息,包含AP、AR、MR和DR等
本文介绍了如何使用COCO评估器通过Detectron2库对目标检测模型进行性能评估,生成coco_instances_results.json文件,并利用pycocotools解析该文件以计算AP、AR、MR和DR等关键指标。
174 1
目标检测笔记(五):查看通过COCOEvaluator生成的coco_instances_results.json文件的详细检测信息,包含AP、AR、MR和DR等
|
3月前
|
XML 前端开发 Java
讲解SSM的xml文件
本文详细介绍了SSM框架中的xml配置文件,包括springMVC.xml和applicationContext.xml,涉及组件扫描、数据源配置、事务管理、MyBatis集成以及Spring MVC的视图解析器配置。
84 1
|
2月前
|
XML Android开发 数据格式
Eclipse 创建 XML 文件
Eclipse 创建 XML 文件
30 2
|
2月前
|
Java Maven
maven项目的pom.xml文件常用标签使用介绍
第四届人文,智慧教育与服务管理国际学术会议(HWESM 2025) 2025 4th International Conference on Humanities, Wisdom Education and Service Management
167 8
|
3月前
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
410 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
3月前
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
55 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
3月前
|
JSON API 数据格式
低代码实现鸿蒙API返回JSON转TS及快速生成ArkUI代码
低代码实现鸿蒙API返回JSON转TS及快速生成ArkUI代码
58 0
低代码实现鸿蒙API返回JSON转TS及快速生成ArkUI代码
|
3月前
|
JSON 数据格式 计算机视觉
Opencv实用笔记(一): 获取并绘制JSON标注文件目标区域(可单独保存目标小图)
本文介绍了如何使用OpenCV和Python根据JSON标注文件获取并绘制目标区域,同时可将裁剪的图像单独保存。通过示例代码,展示了如何读取图片路径、解析JSON标注、绘制标注框并保存裁剪图像的过程。此外,还提供了相关的博客链接,供读者进一步学习。
62 0
|
8月前
|
JSON 前端开发 Java
Json格式数据解析
Json格式数据解析
132 1
|
5月前
|
JSON Java Android开发
Android 开发者必备秘籍:轻松攻克 JSON 格式数据解析难题,让你的应用更出色!
【8月更文挑战第18天】在Android开发中,解析JSON数据至关重要。JSON以其简洁和易读成为首选的数据交换格式。开发者可通过多种途径解析JSON,如使用内置的`JSONObject`和`JSONArray`类直接操作数据,或借助Google提供的Gson库将JSON自动映射为Java对象。无论哪种方法,正确解析JSON都是实现高效应用的关键,能帮助开发者处理网络请求返回的数据,并将其展示给用户,从而提升应用的功能性和用户体验。
116 1