COCO转VOC代码:将coco格式的json文件转换为voc格式的xml文件

简介: COCO转VOC代码:将coco格式的json文件转换为voc格式的xml文件
from pycocotools.coco import COCO
import os
from lxml import etree, objectify
import shutil
from tqdm import tqdm
import sys
import argparse
# 将类别名字和id建立索引
def catid2name(coco):
    classes = dict()
    for cat in coco.dataset['categories']:
        classes[cat['id']] = cat['name']
    return classes
# 将标签信息写入xml
def save_anno_to_xml(filename, size, objs, save_path):
    E = objectify.ElementMaker(annotate=False)
    anno_tree = E.annotation(
        E.folder("DATA"),
        E.filename(filename),
        E.source(
            E.database("The VOC Database"),
            E.annotation("PASCAL VOC"),
            E.image("flickr")
        ),
        E.size(
            E.width(size['width']),
            E.height(size['height']),
            E.depth(size['depth'])
        ),
        E.segmented(0)
    )
    for obj in objs:
        E2 = objectify.ElementMaker(annotate=False)
        anno_tree2 = E2.object(
            E.name(obj[0]),
            E.pose("Unspecified"),
            E.truncated(0),
            E.difficult(0),
            E.bndbox(
                E.xmin(obj[1]),
                E.ymin(obj[2]),
                E.xmax(obj[3]),
                E.ymax(obj[4])
            )
        )
        anno_tree.append(anno_tree2)
    anno_path = os.path.join(save_path, filename[:-3] + "xml")
    etree.ElementTree(anno_tree).write(anno_path, pretty_print=True)
# 利用cocoAPI从json中加载信息
def load_coco(anno_file, xml_save_path):
    if os.path.exists(xml_save_path):
        shutil.rmtree(xml_save_path)
    os.makedirs(xml_save_path)
    coco = COCO(anno_file)
    classes = catid2name(coco)
    imgIds = coco.getImgIds()
    classesIds = coco.getCatIds()
    for imgId in tqdm(imgIds):
        size = {}
        img = coco.loadImgs(imgId)[0]
        filename = img['file_name']
        width = img['width']
        height = img['height']
        size['width'] = width
        size['height'] = height
        size['depth'] = 3
        annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
        anns = coco.loadAnns(annIds)
        objs = []
        for ann in anns:
            object_name = classes[ann['category_id']]
            # bbox:[x,y,w,h]
            bbox = list(map(int, ann['bbox']))
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[0] + bbox[2]
            ymax = bbox[1] + bbox[3]
            obj = [object_name, xmin, ymin, xmax, ymax]
            objs.append(obj)
        save_anno_to_xml(filename, size, objs, xml_save_path)
def parseJsonFile(data_dir, xmls_save_path):
    assert os.path.exists(data_dir), "data dir:{} does not exits".format(data_dir)
    if os.path.isdir(data_dir):
        # 这里注意修改
        data_types = ['train', 'val']
        for data_type in data_types:
            ann_file = 'instances_{}.json'.format(data_type)
            xmls_save_path = os.path.join(xmls_save_path, data_type)
            load_coco(ann_file, xmls_save_path)
    elif os.path.isfile(data_dir):
        anno_file = data_dir
        load_coco(anno_file, xmls_save_path)
if __name__ == '__main__':
    """
    脚本说明:
        该脚本用于将coco格式的json文件转换为voc格式的xml文件
    参数说明:
        data_dir:json文件的路径
        xml_save_path:xml输出路径
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--data-dir', type=str, default='./Task/cocome/annotations/instance_train.json', help='json path')
    parser.add_argument('-s', '--save-path', type=str, default='./Task/voc', help='xml save path')
    opt = parser.parse_args()
    print(opt)
    if len(sys.argv) > 1:
        parseJsonFile(opt.data_dir, opt.save_path)
    else:
    # 这里修改 coco的训练集json地址
        data_dir = './Task/cocome/annotations/instance_train.json'
    # 这里改成VOC xml文件的保存路径
        xml_save_path = './Task/voc'
        parseJsonFile(data_dir=data_dir, xmls_save_path=xml_save_path)


https://zhuanlan.zhihu.com/p/461488682

目录
相关文章
|
1月前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
2月前
|
XML Java 数据格式
使用idea中的Live Templates自定义自动生成Spring所需的XML配置文件格式
本文介绍了在使用Spring框架时,如何通过创建`applicationContext.xml`配置文件来管理对象。首先,在resources目录下新建XML配置文件,并通过IDEA自动生成部分配置。为完善配置,特别是添加AOP支持,可以通过IDEA的Live Templates功能自定义XML模板。具体步骤包括:连续按两次Shift搜索Live Templates,配置模板内容,输入特定前缀(如spring)并按Tab键即可快速生成完整的Spring配置文件。这样可以大大提高开发效率,减少重复工作。
使用idea中的Live Templates自定义自动生成Spring所需的XML配置文件格式
|
2月前
|
JSON 人工智能 算法
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
|
3月前
|
JSON JavaScript Java
对比JSON和Hessian2的序列化格式
通过以上对比分析,希望能够帮助开发者在不同场景下选择最适合的序列化格式,提高系统的整体性能和可维护性。
118 3
|
3月前
|
JSON API 数据安全/隐私保护
拍立淘按图搜索API接口返回数据的JSON格式示例
拍立淘按图搜索API接口允许用户通过上传图片来搜索相似的商品,该接口返回的通常是一个JSON格式的响应,其中包含了与上传图片相似的商品信息。以下是一个基于淘宝平台的拍立淘按图搜索API接口返回数据的JSON格式示例,同时提供对其关键字段的解释
|
3月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
3月前
|
JSON Java 数据格式
springboot中表字段映射中设置JSON格式字段映射
springboot中表字段映射中设置JSON格式字段映射
180 1
|
9月前
|
XML JSON 前端开发
初学者指南:JSON 和 XML 的区别
当我们讨论数据交换格式时,JSON(JavaScript对象表示法)和 XML(可扩展标记语言)无疑是最受欢迎的两种选择。这两者各有优点和缺点,根据具体的应用场景,选择合适的格式可以显著提高开发效率和系统性能。
|
XML JSON JavaScript
json转java实体,JSON和XML的区别比较,c#和c++的编译工具, 静态库和动态库的区别
json转java实体,JSON和XML的区别比较,c#和c++的编译工具, 静态库和动态库的区别
293 0
json转java实体,JSON和XML的区别比较,c#和c++的编译工具, 静态库和动态库的区别
|
XML JSON 前端开发
Android网络请求,获取数据demo,几种网络请求的区别,JSON 与 XML 的区别、优劣势
Android网络请求,获取数据demo,几种网络请求的区别,JSON 与 XML 的区别、优劣势
268 0