目标检测+目标追踪+单目测距(毕设+代码)下

简介: 目标检测+目标追踪+单目测距(毕设+代码)

正文


模块


DeepSORT主要有三个模块:特征提取模块、卡尔曼滤波模块和匈牙利算法模块。其中,特征提取模块使用卷积神经网络(CNN)提取每个目标的特征向量,以区分不同目标之间的差异。卡尔曼滤波模块用于预测每个目标的位置和速度,以减小运动模糊和噪声对追踪结果的影响。匈牙利算法模块用于将当前帧中的每个检测框与上一帧中已跟踪的目标进行匹配,以确定每个目标的唯一ID,并更新目标的位置和速度信息。


新特点


DeepSORT除了基本的跟踪功能外,还具有一些高级功能。例如,它可以对目标进行重新识别,以处理目标遮挡、漂移等问题;它还可以使用多个相机进行目标跟踪,以处理多个视角的场景;它还可以实现在线学习,以适应不同场景下的目标特征。


单目测距


# 介绍


YOLO(You Only Look Once)是一种单阶段目标检测算法,可以在图像中检测出多个物体,并输出它们的类别和位置信息。与传统的目标检测方法不同,YOLO不仅可以检测物体,还可以计算物体的深度信息,从而实现单目测距。


代码


depth = (cam_H / np.sin(angle_c)) * math.cos(angle_b)#目标深度
    #     print('depth', depth)
##联系--方式:----qq1309399183--------
    k_inv = np.linalg.inv(in_mat)#K^-1 内参矩阵的逆
    p_inv = np.linalg.inv(out_mat)#R^-1 外参矩阵的逆
    print("out---:",p_inv)
    point_c = np.array([x_d, y_d, 1])  ##图像坐标
    point_c = np.transpose(point_c)#目标的世界坐标
    #     print('point_c', point_c)
    print('in----', k_inv)
    ##相机坐标系和图像坐标系下物体坐标可按照下式转换。
    c_position = np.matmul(k_inv, depth * point_c)#Zc*[u,v,1].T*ins^-1==[Xc,Yc,Zc].T #坐标转换


YOLO单目测距的具体实现方法有多种,其中比较常见的方法是基于单目视觉几何学的方法。该方法利用相机成像原理和三角测量原理,通过计算物体在图像中的位置和大小,以及相机的内参和外参等参数,来估计物体的距离。


测距步骤


具体来说,YOLO单目测距可以分为以下几个步骤:


2f5b3b3abe6f490d8013c849e6c56c94_d02e21b649fd4f068a7e2320dc35f18a.png


  1. 相机标定:通过拍摄特定的标定板,获取相机的内参和外参等参数,用于后续的距离计算。
  2. 目标检测:使用YOLO算法在图像中检测出目标,并获取目标的位置和大小信息。
  3. 物体位置计算:利用相机成像原理和三角测量原理,计算物体在相机坐标系下的三维坐标。
  4. 距离计算:利用相机的内参和外参等参数,将物体在相机坐标系下的三维坐标转换为物体在世界坐标系下的三维坐标,并计算物体与相机之间的距离。


除了基于单目视觉几何学的方法外,还有一些其他的方法可以实现YOLO单目测距,例如基于深度学习的方法和基于光流的方法等,这些方法都有其优缺点和适用场景,需要根据实际情况选择合适的方法。


243972c7cedf051ccba632b20a6cf32b_a61e0029574e476fa9c307a9c3464168.png


结论


总的来说,YOLO单目测距是一种基于单目视觉的距离估计方法,具有简单、快速、低成本等优点,在自动驾驶、机器人导航、智能交通等领域有广泛的应用前景。但需要注意的是,由于单目视觉存在一些局限性,如遮挡、光照变化、纹理缺失等问题,因此需要结合其他传感器或算法进行辅助,以提高测距的准确度和鲁棒性。



相关文章
|
5月前
|
机器学习/深度学习 传感器 人机交互
3D人体姿态估计(教程+代码)
3D人体姿态估计(教程+代码)
|
1月前
|
监控 算法 数据安全/隐私保护
基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。
|
2月前
|
开发者 图形学 Java
揭秘Unity物理引擎核心技术:从刚体动力学到关节连接,全方位教你如何在虚拟世界中重现真实物理现象——含实战代码示例与详细解析
【8月更文挑战第31天】Unity物理引擎对于游戏开发至关重要,它能够模拟真实的物理效果,如刚体运动、碰撞检测及关节连接等。通过Rigidbody和Collider组件,开发者可以轻松实现物体间的互动与碰撞。本文通过具体代码示例介绍了如何使用Unity物理引擎实现物体运动、施加力、使用关节连接以及模拟弹簧效果等功能,帮助开发者提升游戏的真实感与沉浸感。
41 1
|
4月前
|
机器学习/深度学习 存储 算法
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
|
4月前
|
机器学习/深度学习 存储 算法
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数(2)
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
|
4月前
|
机器学习/深度学习 计算机视觉 Python
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数(3)
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
|
4月前
|
机器学习/深度学习 编解码 监控
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数(1)
深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
|
算法 安全 定位技术
模拟可执行的四旋翼模型——在未知环境下运动规划应用研究(Matlab代码实现)
模拟可执行的四旋翼模型——在未知环境下运动规划应用研究(Matlab代码实现)
|
机器学习/深度学习 算法 自动驾驶
目标检测+目标追踪+单目测距(毕设+代码)上
目标检测+目标追踪+单目测距(毕设+代码)
|
人工智能 自动驾驶 计算机视觉
单目3D检测入门!从图像角度分析3D目标检测场景:MonoDLE
这篇文章的价值就在于简单,对单目检测这个任务进行了拆解分析,对于刚接触这一领域的工作者十分友好,可以对单目检测建立一个初步的认识。并且,他的加强版模型MonoCon去年也曾拿过一段时间的KITTY榜首,证明了这套方法的有效性。
单目3D检测入门!从图像角度分析3D目标检测场景:MonoDLE
下一篇
无影云桌面