人体姿态识别(毕业设计+代码)

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 人体姿态识别(毕业设计+代码)

模型效果


从下图可以清楚的看到,提出的模型可以对人眼以及嘴巴进行描述。

最终的是对每个关节点进行了划分和表示。

https://ucc.alicdn.com/images/user-upload-01/6de18dbd91464369938018efbf223185.png


前言


从视频中进行人体姿势估计在各种应用中都扮演着关键角色,例如量化身体锻炼、手语识别和全身手势控制。例如,它可以成为瑜伽、舞蹈和健身应用的基础。它还可以在增强现实中将数字内容和信息覆盖在物理世界之上。


模型介绍


提出的人体识别模型是一种高保真度的身体姿势跟踪机器学习解决方案,可以从RGB视频帧中推断出整个身体的33个3D标记和背景分割掩码,利用先前BlazePose研究,该研究还为ML Kit Pose Detection API提供支持。值得注意的是,目前最先进的方法主要依赖于强大的桌面环境进行推断,而我们的方法可以在大多数现代手机、桌面/笔记本电脑上实现实时性能,甚至在Python和Web上也可以使用可谓是功能十分强大!


算法介绍


这个解决方案利用了一种两步探测器-跟踪器机器学习流程,决方案中已经被证明是有效的。使用探测器,该流程首先定位帧内的人/姿势感兴趣区域(ROI)。然后,跟踪器使用ROI裁剪帧作为输入,在ROI内预测姿势标记和分割掩码。请注意,对于视频用例,只有在需要时才会调用探测器,即在第一帧和跟踪器无法在上一帧中识别身体姿势存在时。对于其他帧,该流程只需从上一帧的姿势标记中派生ROI。


模型


人物/姿势检测模型(BlazePose检测器)

该检测器受我们自己的轻量级BlazeFace模型的启发,该模型用作MediaPipe面部检测的代理人物检测器。它明确预测另外两个虚拟关键点,以牢固描述人体的中心、旋转和比例,形成一个圆。灵感来自于达·芬奇的《维特鲁威人》,我们预测一个人的臀部中点、围绕整个人的圆的半径以及连接肩膀和臀部中点的线的倾斜角度。

1060b9095c2c0f30b942d0d169e62570_e49577f3022d48ce8ba096400dbc24c0.png


算法代码


核心代码部分 顺便看下效果

https://ucc.alicdn.com/images/user-upload-01/0efaf82f2a64422b8e315e18803fc759.png


支持的配置选项:

static_image_mode(静态图像模式)

model_complexity(模型复杂度)

smooth_landmarks(平滑标记点)

enable_segmentation(启用分割)

smooth_segmentation(平滑分割)

min_detection_confidence(最小检测置信度)

min_tracking_confidence(最小跟踪置信度)

with mp_pose.Pose(
#全部代码----->q1309399183<---------
    static_image_mode=True,
    model_complexity=2,
    enable_segmentation=True,
    min_detection_confidence=0.5) as pose:
  for idx, file in enumerate(IMAGE_FILES):
    image = cv2.imread(file)
    image_height, image_width, _ = image.shape
    # Convert the BGR image to RGB before processing.
    results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    if not results.pose_landmarks:
      continue
    print(
        f'Nose coordinates: ('
        f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].x * image_width}, '
        f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].y * image_height})'
    )


算法结论和效果展示


该流程是作为一个e图实现的,它使用了姿势标记模块中的姿势标记子图,并使用专用的姿势渲染器子图进行渲染。姿势标记子图在内部使用了姿势检测模块中的姿势检测子图。

https://ucc.alicdn.com/images/user-upload-01/a4c37b04e02f4554bf749f23c0949af3.png


代码部分可私信交流



相关文章
|
人工智能 计算机视觉
【人工智能】人脸识别检测戴口罩实战之初识OpenCV简单操作之图像处理,实现脸部打码【第二课】
初识OpenCV简单操作之图像处理,获取人脸特征,给图像简单的打码,绘制图形、运算、几何变换、平滑处理、边缘检测
501 1
【人工智能】人脸识别检测戴口罩实战之初识OpenCV简单操作之图像处理,实现脸部打码【第二课】
|
17天前
|
人工智能 小程序 API
【一步步开发AI运动小程序】十七、如何识别用户上传视频中的人体、运动、动作、姿态?
【云智AI运动识别小程序插件】提供人体、运动、姿态检测的AI能力,支持本地原生识别,无需后台服务,具有速度快、体验好、易集成等优点。本文介绍如何使用该插件实现用户上传视频的运动识别,包括视频解码抽帧和人体识别的实现方法。
|
2月前
|
人工智能 小程序 前端开发
【一步步开发AI运动小程序】六、人体骨骼图绘制
随着AI技术的发展,阿里体育等公司推出的AI运动APP如“乐动力”、“天天跳绳”等,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始,利用“云智AI运动识别小程序插件”,在小程序中实现类似功能,包括人体骨骼图的绘制原理及其实现代码,确保骨骼图与人体图像精准重合。下篇将继续介绍运动分析方法。
|
2月前
|
人工智能 小程序
【一步步开发AI运动小程序】五、帧图像人体识别
随着AI技术的发展,阿里体育等公司推出的AI运动APP,如“乐动力”和“天天跳绳”,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始开发一个AI运动小程序,使用“云智AI运动识别小程序插件”。文章分为四部分:初始化人体识别功能、调用人体识别功能、人体识别结果处理以及识别结果旋转矫正。下篇将继续介绍人体骨骼图绘制。
|
8月前
|
人工智能
姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-2
姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-2
|
8月前
|
机器学习/深度学习 人工智能 算法
姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-1
姿态识别+康复训练矫正+代码+部署(AI 健身教练来分析深蹲等姿态)-1
|
8月前
Halcon 学习笔记六:车牌识别案例
Halcon 学习笔记六:车牌识别案例
241 0
|
8月前
|
计算机视觉 Python
OpenCV检测眼睛、猫脸、行人、车牌实战(附Python源码)
OpenCV检测眼睛、猫脸、行人、车牌实战(附Python源码)
330 0
|
机器学习/深度学习 决策智能 计算机视觉
计算机视觉实战(十三)停车场车位识别(附完整代码)
计算机视觉实战(十三)停车场车位识别(附完整代码)
227 0
|
机器学习/深度学习 传感器 人工智能
【人脸识别】基于Kinect-V.2的人脸识别系统设计附matlab代码
【人脸识别】基于Kinect-V.2的人脸识别系统设计附matlab代码

热门文章

最新文章