【Pytorch神经网络理论篇】 19 循环神经网络训练语言模型:语言模型概述+NLP多项式概述

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: torch.nn.LSTM类与torch..nn.GRU类并不属于单层的网络结构,它本质上是对RNNCell的二次封装,将基本的RNN Cell按照指定的参数连接起来,形成一个完整的RNN。

同学你好!本文章于2021年末编写,获得广泛的好评!


故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,


Pytorch深度学习·理论篇(2023版)目录地址为:


CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录


本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!

https://v9999.blog.csdn.net/article/details/127587345

欢迎大家订阅(2023版)理论篇

以下为2021版原文~~~~


be8893cca26342839e077e30f3785272.png


1 语言模型


循环神经网络模型可以对序列片段进行学习,找到样本间的顺序特征。这个特性非常适合运用在语言处理方向。


20180517162001401.png


1.1 语言模型简介


语言模型包括文法语言模型和统计语言模型,一般指统计语言模型。


1.1.1 统计语言模型


统计语言模型是指:把语言(词的序列)看成一个随机事件,并赋予相应的概率来描述其属于某种语言集合的可能性,衡量一个句子的合理性,概率越高,说明这个句子越像是自然句子。


统计语言模型的作用是,为一个长度为m的字符串确定一个概率分布P(w1,w2,...,wm),表示其存在的可能性。其中,”w1~wm”依次表示这段文本中的各个词,用这种模型通过这些方法可以保留一定的词序信息,获得一个词的上下文信息。


2 词表与词向量


2.1 词表与词向量


   词表是指给每个单词(或字)编码,即用数字来表示单词(或字),这样才能将句子输入到神经网络中进行处理。


   比较简单的词表是为每个单词(或字)按顺序进行编号,或将这种编号用one_hot编码来表示。但是,这种简单的编号方式只能描述不同的单词(或字),无法将单词(或字)的内部含义表达出来。


于是人们开始用向量来映射单词(或字),可以表达更多信息,这种用来表示每个词的向量就称为词向量(也称词嵌入)。词向量可以理解为one-hot编码的升级版,它使用多维向量更好地描述词与词之间的关系。


2.2 词向量的原理与实现


词向量的最大优势在于可以更好地表示上下文语义。


2.2.1 词向量的含义


词向量表示词与词之间的远近关系映射为向量间的距离,从而最大限度地保留了单词(或字)原有的特征,建立在分布假说(distributional hypothesis)基础上的,即假设词的语义由其上下文决定,上下文相似的词,其语义也相似。


2.2.2 词向量的组成


(1)选择一种方式描述上下文;


(2)选择一种模型刻画某个目标词与其上下文之间的关系。


2.3 词向量的原理与实现


 one_hot编码的映射方法本质上也属于词向量,即把每个字表示为一个很长的向量,这个向量的维度是词表大小,并且只有一个维度的值为1,其余的维度都为0。这个为1的度就代表了当前的字。


   one_hot编码与词向量的唯一区别就是仅仅将字符号化,不考虑任何语义信息。如one_hot编码每一个元素由整型改为浮点型,同时再将原来稀疏的巨大维度压缩嵌入到人更小维度的空间,那么它就等同于词向量。


21393564f27c4804845526e53f22c639.png


2.4 词向量的实现


在神经网络的实现中,词向量更多地被称为词嵌入(word embedding),具体做法是将二维的张量映射到多维空间,即embedding中的元素将不再是、个字,而变成了字所转化的多维向量,所有向量之间是有距离远近关系的。


3 NLP中多项式的分布


在自然语言中,一句话中的某个词并不是唯一的。例如,“代码医生工作室真棒”这句话中的最后一个字“棒”,也可以换成“好”,不会影响整句话的语义。


3.1 RNN模型中存在的问题


在RNN模型中,将一个使用语言样本训练好的模型用于生成文本时,会发现模型总会将在下一时刻出现概率最大的那个词取出,即仅仅实现一种语言的设计,这种生成文本的方式失去了语言本身的多样性。


3.2 解决方案


为了解决这个问题,将RNN模型的最终结果当成一个多项式分布(multinomialdistribution),以分布取样的方式预测出下一序列的词向量。用这种方法所生成的句子更符合语言的特性。


3.2.1 多项式分布


多项式分布多项式分布是二项式分布的拓展。


二项式分布的典型例子是“扔硬币”:硬币正面朝上的概率为P,重复扔n次硬币,所得到k次正面朝上的概率即为一个二项式分布概率。把二项式分布公式拓展至多种状态,就得到了多项式分布。


3.2.2 多项式分布在RNN模型中的应用


多项式分布在RNN模型中的应用在RNN模型中,预测的结果不再是下一个序列中出现的具体某一个词,而是这个词的分布情况,这便是在RNN模型中使用多项式分布的核心思想。在获得该词的多项式分布之后,便可以在该分布中进行采样操作,获得具体的词,这种方式更符合NLP任务中语言本身的多样性,即一个句子中的某个词并不是唯一的。


3.2.3 RNN模型中的实现步骤


   (1)将RNN模型预测的结果通过全连接或卷积,变成与字典维度相同的数组。

   (2)用该数组代表模型所预测结果的多项式分布。

   (3)用torch.multinomial()函数从预测结果中采样,得到真正的预测结果。


3.3 torch.multinomial()


torch.multinomial(input, num_samples,replacement=False, out=None) → LongTensor


  • 函数作用:对input的每一行做n_samples次取值,输出的张量是每一次取值时input张量对应行的下标。输入是一个input张量,一个取样数量,和一个布尔值replacement。


  • input:张量可以看成一个权重张量,每一个元素代表其在该行中的权重。如果有元素为0,那么在其他不为0的元素,被取干净之前,这个元素是不会被取到的。


  • n_samples:是每一行的取值次数,该值不能大于每一样的元素数,否则会报错。


  • replacement:指的是取样时是否是有放回的取样,True是有放回,False无放回。


3.3.1 代码实现(每次多想次分布采样的结果均不同)


import torch
# 生成一串0-1的随机数
data = torch.rand(2,4)
print("生成的数据列表",data)
#生成的数据列表 tensor([[0.8998, 0.6512, 0.9156, 0.8575],[0.8455, 0.4838, 0.6859, 0.2629]])
a = torch.multinomial(data,1)
print("第一次采样结果:",a)
# 第一次采样结果: tensor([[0],[0]])
b = torch.multinomial(data,1)
print("第二次采样结果:",b)
# 第二次采样结果: tensor([[0],[1]])


4 循环神经网络的实现


47f0c166b6d1489bb2ac76b55c7bd248.png

71ea0698a0b340c0b7da9f16bf5263a0.png


a619482d82c448b7a9ac75604f9e48c7.png


4.1 RNN的底层类


torch.nn.LSTM类与torch..nn.GRU类并不属于单层的网络结构,它本质上是对RNNCell的二次封装,将基本的RNN Cell按照指定的参数连接起来,形成一个完整的RNN。


在torch.nn.LSTM类与torch.nn.GRU类的内部还会分别调用torch.nn.LSTMCel类与torch.nn.GRUCell类进行具体实现。

目录
相关文章
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
178 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
2月前
|
机器学习/深度学习 运维 安全
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
金融交易网络与蛋白质结构的共同特点是它们无法通过简单的欧几里得空间模型来准确描述,而是需要复杂的图结构来捕捉实体间的交互模式。传统深度学习方法在处理这类数据时效果不佳,图神经网络(GNNs)因此成为解决此类问题的关键技术。GNNs通过消息传递机制,能有效提取图结构中的深层特征,适用于欺诈检测和蛋白质功能预测等复杂网络建模任务。
81 2
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
67 8
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
使用Pytorch构建视觉语言模型(VLM)
视觉语言模型(Vision Language Model,VLM)正在改变计算机对视觉和文本信息的理解与交互方式。本文将介绍 VLM 的核心组件和实现细节,可以让你全面掌握这项前沿技术。我们的目标是理解并实现能够通过指令微调来执行有用任务的视觉语言模型。
54 2
|
2月前
|
SQL 存储 安全
网络安全与信息安全概述####
本文探讨了网络安全(Cybersecurity)和信息安全(Information Security)的基本概念及其差异,重点介绍了网络安全漏洞、加密技术及安全意识在信息保护中的重要性。本文旨在通过深入分析这些关键技术和策略,提升对信息安全整体性的理解,帮助读者在数字化时代更好地应对信息安全挑战。 ####
|
3月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
3月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
3月前
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。

热门文章

最新文章

相关产品

  • 自然语言处理