深度学习/自动驾驶数据集大集合(目标检测/图像分割/语义分割/图像分类/)

简介: 深度学习/自动驾驶数据集大集合(目标检测/图像分割/语义分割/图像分类/)

CIFAR-10数据集


CIFAR-10数据集(加拿大高级研究所,10类)是 Tiny Images 数据集的一个子集,由60000个32x32彩色图像组成。这些图片被贴上了10个相互排斥类别的标签: 飞机、汽车(但不包括卡车或皮卡)、鸟、猫、鹿、狗、青蛙、马、船和卡车(但不包括皮卡)。每个班有6000张图片,每个班有5000张训练图片和1000张测试图片。

fecc85e737db332c15ee04472808b92a_3e89f1e116fb420dbe04781d5ae93466.png


ImageNet数据集


根据 WordNet 层次结构,ImageNet 数据集包含14,197,122个带注释的图像。自2010年以来,该数据集被用于 ImageNet 大规模视觉识别挑战(ILSVRC) ,一个图像分类和目标检测的基准。公开发布的数据集包含一组手动注释的训练图像。还发布了一组测试映像,并且保留了手动注释。ILSVRC 注释可以分为两类: (1)图像级注释的二进制标签的存在或不存在的对象类在图像中,例如,“有汽车在这个图像”,但“没有老虎”,和(2)对象级注释的一个紧密的边界框和类标签周围的对象实例在图像中,例如,“有一个螺丝刀居中的位置(20,25) ,宽度为50像素,高度为30像素”。ImageNet 项目不拥有图像的版权,因此只提供图像的缩略图和 URL。

50023d230516a984df3ab02d911b4b71_ae2f7f91eed74308addebdde4be2610d.png


COCO (Microsoft Common Objects in Context)数据集


28ad9299c7d1a9fc601812b1de7375b4_7c4fd1089d4b4357ba5f5153a14eae5b.png


fb4539fb194c9fbd7b1b7aee222faf76_171f4fc905d14d879863eef0dc03ef36.png

#图像分割#目标检测用!!!!!!!!!!!


MNIST数据集


MNIST 数据库(修改后的国家标准和技术研究所数据库)是一个手写数字的大集合。它有一套包含60,000个例子的训练集和一套包含10,000个例子的测试集。它是一个较大的 NIST 特殊数据库3(美国人口普查局的雇员编写的数字)和特殊数据库1(高中生编写的数字)的子集,其中包含手写数字的单色图像。这些数字已经尺寸归一化,并在固定大小的图像中居中。来自 NIST 的原始黑白(双层)图像经过了尺寸标准化,以适应20x20像素的盒子,同时保留了它们的高宽比。由于归一化算法所采用的抗混叠技术,得到的图像含有灰度。通过计算像素质量中心,并将图像平移以使该点位于28x28视场的中心,使图像集中在28x28图像中心。

e3b91cc9546f681d916e57b2bab8dcdb_aa2a3ab568a24f92b13df11e23d8530e.png


CIFAR-100数据集


CIFAR-100数据集(加拿大高级研究所,100个类)是Tiny Images数据集的子集,由60000张32x32彩色图像组成。CIFAR-100 中的 100 个类被分为 20 个超类。每个班级有600张图片。每个图像都带有一个“精细”标签(它所属的类)和一个“粗”标签(它所属的超类)。每类有 500 张训练图像和 100 张测试图像。


确定图像是否属于某个类的标准如下:


类名应该在“这张图片中有什么”这个问题的可能答案列表中名列前茅。

图像应该是照片般逼真的。贴标机被指示拒绝线条图。

图像应仅包含类所引用对象的一个突出实例。

该物体可能被部分遮挡或从不寻常的角度看到,只要其身份对贴标者仍然清晰可见。

8c715aa7f831207066653ee548183c1d_4c41fb43d6244b93bfb8516633c25e92.png


Cityscapes数据集


城市景观是一个大型数据库,专注于城市街景的语义理解。它为 30 个类(平面、人类、车辆、构造、对象、自然、天空和虚空)提供语义、实例和密集像素注释。该数据集由大约5000张精细注释图像和20000张粗注释图像组成。在几个月,白天和良好的天气条件下,在50个城市捕获了数据。它最初被录制为视频,因此手动选择帧以具有以下功能:大量动态对象,不同的场景布局和不同的背景。

2262b4fe337bfa52ef0c12c614b2f15c_9ec3e3ec105c471e863badcaa1d25ba8.png



相关文章
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
67 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
28天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶汽车中的应用####
【10月更文挑战第21天】 本文探讨了深度学习中的卷积神经网络(CNN)如何革新自动驾驶车辆的视觉感知能力,特别是在复杂多变的道路环境中实现高效准确的物体检测与分类。通过分析CNN架构设计、数据增强策略及实时处理优化等关键技术点,揭示了该技术在提升自动驾驶系统环境理解能力方面的潜力与挑战。 ####
63 0
|
14天前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
64 1
|
20天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
72 6
|
1月前
|
机器学习/深度学习 传感器 自动驾驶
深度学习在自动驾驶中的应用与挑战####
本文探讨了深度学习技术在自动驾驶领域的应用现状、面临的主要挑战及未来发展趋势。通过分析卷积神经网络(CNN)和循环神经网络(RNN)等关键算法在环境感知、决策规划中的作用,结合特斯拉Autopilot和Waymo的实际案例,揭示了深度学习如何推动自动驾驶技术向更高层次发展。文章还讨论了数据质量、模型泛化能力、安全性及伦理道德等问题,为行业研究者和开发者提供了宝贵的参考。 ####
|
18天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术及其在自动驾驶中的应用####
本文深入探讨了深度学习驱动下的图像识别技术,特别是在自动驾驶领域的革新应用。不同于传统摘要的概述方式,本节将直接以“深度学习”与“图像识别”的技术融合为起点,简述其在提升自动驾驶系统环境感知能力方面的核心作用,随后快速过渡到自动驾驶的具体应用场景,强调这一技术组合如何成为推动自动驾驶从实验室走向市场的关键力量。 ####
40 0
|
22天前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶汽车中的应用##
本文深入探讨了深度学习技术在自动驾驶汽车图像识别领域的应用,通过分析卷积神经网络(CNN)、循环神经网络(RNN)等关键技术,阐述了如何利用这些先进的算法来提升自动驾驶系统对环境感知的准确性和效率。文章还讨论了当前面临的挑战,如数据多样性、模型泛化能力以及实时处理速度等问题,并展望了未来发展趋势,包括端到端学习框架、跨模态融合及强化学习方法的应用前景。 --- ##
54 0
|
22天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶领域的应用与挑战####
本文旨在探讨深度学习驱动下的图像识别技术于自动驾驶汽车中的应用现状,重点分析其在环境感知、障碍物检测及路径规划等方面的贡献,并深入剖析该技术面临的数据依赖性、算法泛化能力、实时处理需求等核心挑战。通过综述当前主流算法框架与最新研究成果,本文为推动自动驾驶技术的稳健发展提供理论参考与实践指导。 ####
43 0
|
1月前
|
机器学习/深度学习 自动驾驶 算法
深度学习在自动驾驶汽车中的应用
深度学习在自动驾驶汽车中的应用
|
2月前
|
机器学习/深度学习 自动驾驶 算法
深度学习中的图像识别技术及其在自动驾驶中的应用
【10月更文挑战第4天】本文深入探讨了深度学习在图像识别领域的应用,并特别关注其在自动驾驶系统中的关键作用。文章首先介绍了深度学习的基本概念和工作原理,随后通过一个代码示例展示了如何利用深度学习进行图像分类。接着,文章详细讨论了图像识别技术在自动驾驶中的具体应用,包括物体检测、场景理解和决策制定等方面。最后,文章分析了当前自动驾驶技术面临的挑战和未来的发展趋势。
60 4
下一篇
DataWorks