最早2026?全球优质语言数据「存量」告急!网友:杞人忧天

简介: 最早2026?全球优质语言数据「存量」告急!网友:杞人忧天
【新智元导读】AI用光所有数据,这一天真的快来了?


作为人工智能的三要素之一,数据的作用举足轻重。

但大家有没有想过:假如有一天,全世界的数据都用完了那咋整?

实际上,提出这个问题的人绝对没有精神问题,因为这一天——可能真的快来了!!!

近日,研究员Pablo Villalobos等人一篇名为《我们会用完数据吗?机器学习中数据集缩放的局限性分析》的论文,发表在了arXiv上。

他们根据之前对数据集大小趋势的分析,预测了语言和视觉领域数据集大小的增长,估计了未来几十年可用未标记数据总存量的发展趋势。

他们的研究表明:最早在2026年,高质量语言数据就将全部消耗殆尽!机器学习发展的速度也将因此而放缓。实在不容乐观。

两方法双管齐下,结果不容乐观


这篇论文的研究团队由11名研究员和3位顾问组成,成员遍布世界各地,致力于缩小AI技术发展与AI战略之间的差距,并为AI安全方面的关键决策者提供建议。

Chinchilla是DeepMind的研究人员提出的一种新型预测计算优化模型。

实际上,此前在对Chinchilla进行实验时,就曾有研究员提出「训练数据很快就会成为扩展大型语言模型的瓶颈」。

因此他们分析了用于自然语言处理和计算机视觉的机器学习数据集大小的增长,并使用了两种方法进行推断:使用历史增长率,并为未来预测的计算预算估计计算最佳数据集大小。

在此之前,他们一直在收集有关机器学习输入趋势的数据,包括一些训练数据等,还通过估计未来几十年互联网上可用未标记数据的总存量,来调查数据使用增长。

由于历史预测趋势可能会受过去十年计算量异常增长的「误导」,研究团队还使用了Chinchilla缩放定律,来估计未来几年的数据集大小,提升计算结果的准确性。

最终,研究人员使用一系列概率模型估计未来几年英语语言和图像数据的总存量,并比较了训练数据集大小和总数据库存的预测,结果如下图所示。

这说明数据集的增长速度将远快于数据存量。

因此,如果当前趋势继续保持下去,数据存量被用光将是不可避免的。下表则显示了预测曲线上每个交叉点的中值耗尽年数。

高质量的语言数据库存最早可能在2026年之前用尽。

相比之下,低质量的语言数据和图像数据情况略好:前者将在2030年至2050年间用光,后者将在2030年至2060年之间。

在论文的最后,研究团队给出结论:如果数据效率没有大幅提高或新的数据来源可用,当前依赖巨大数据集不断膨胀的机器学习模型,它的增长趋势很可能会放缓。

网友:杞人忧天,Efficient Zero了解一下


不过在这篇文章的评论区里,大多数网友却认为作者杞人忧天。

Reddit上,一位名为ktpr的网友表示:

「自我监督学习有啥毛病么?如果任务指定得好,它甚至可以组合扩展数据集大小。」

名为lostmsn的网友则更加不客气。他直言:

「Efficient Zero都不了解一下?我认为作者已经严重脱离时代了。」

Efficient Zero是一种能高效采样的强化学习算法,由清华大学的高阳博士提出。

在数据量有限的情况下,Efficient Zero一定程度上解决了强化学习的性能问题,并在算法通用测试基准Atari Game上获得了验证。

在这篇论文作者团队的博客上,就连他们自己也坦言:

「我们所有的结论都基于不切实际的假设,即当前机器学习数据使用和生产的趋势将继续保持下去,并且数据效率不会有重大提升。」

「一个更加靠谱的模型应该考虑到机器学习数据效率的提高、合成数据的使用以及其他算法和经济因素。」

「因此就实际情况来说,这种分析有严重的局限性。模型的不确定性非常高。」

「不过总体而言,我们仍认为由于缺乏训练数据,到2040年时机器学习模型的扩展有大约有20%的可能性会显著放缓。」

参考资料:

https://arxiv.org/abs/2211.04325

https://epochai.org/blog/will-we-run-out-of-ml-data-evidence-from-projecting-dataset

https://www.reddit.com/r/MachineLearning/comments/yx7zft/r_will_we_run_out_of_data_an_analysis_of_the/


相关文章
|
算法 物联网 开发者
分享一个近期开源火爆全网的额温枪方案(硬件+源码)
分享一个近期开源火爆全网的额温枪方案(硬件+源码)
194 1
GitHub上疯传数万次的蚂蚁内部绝密分布式高可用算法笔记太香了
GitHub上疯传数万次的蚂蚁内部绝密分布式高可用算法笔记太香了!! 这份笔记包含10章的内容,每一章都分为若干小节,每个小节里面都包含更多细节化的内容。
|
算法
GitHub 上疯传数万次的蚂蚁内部绝密分布式高可用算法笔记太香了
说在前面的话 GitHub上疯传数万次的蚂蚁内部绝密分布式高可用算法笔记太香了!! 这份笔记包含10章的内容,每一章都分为若干小节,每个小节里面都包含更多细节化的内容。 内容简介 本文从原理出发,系统性地介绍了分布式系统和算法,而非介绍如何使 用某种分布式框架。
80 0
|
机器学习/深度学习 人工智能 自然语言处理
阳过→阳康,数据里的时代侧影;谷歌慌了!看各公司如何应对ChatGPT;两份优质AI年报;本周技术高光时刻 | ShowMeAI每周通讯 #003-12.24
这是ShowMeAI每周通讯的第3期。本期内容关键词:新冠、ChatGPT、2022 AI 报告、腾讯·绝悟、阿里·AliceMind、小红书·全站智投、OpenAI·Point-E、Google·CALM、Wayve·MILE、AI2·MemPrompt、Stanford x MosaicML·PubMed GPT、腾讯全员大会、特斯拉裁员、图森未来裁员、AI 应用与工具大全。
553 0
阳过→阳康,数据里的时代侧影;谷歌慌了!看各公司如何应对ChatGPT;两份优质AI年报;本周技术高光时刻 | ShowMeAI每周通讯 #003-12.24
|
人工智能 自然语言处理 搜索推荐
增长难题如何破?20天后引擎大会或给出“答题指引”
增长难题如何破?20天后引擎大会或给出“答题指引”
261 0
增长难题如何破?20天后引擎大会或给出“答题指引”
|
架构师 定位技术 开发者
在有限的时间内解决关键的问题:百度开放云编程马拉松
Hackathon(编程马拉松)是一项让开发者们聚在一起,以团队合作的形式在特定时间内完成自己的参赛作品的活动。11月24日,由百度开放云与PingWest联合举办的百度开放云编程马拉松活动顺利结束,这次比赛共有20只团队报名参赛,从23日下午开始,经过连续30个小时的奋战后,有19只团队完成了自己的参赛作品。每组团队在对自己的作品进行Demo演示后,评委们根据创意、完成度、百度开放云相关度和商业化四个方面对每组作品进行了打分,最后有5只团队脱颖而出,分别获得了本次活动的不同奖项。
191 0
在有限的时间内解决关键的问题:百度开放云编程马拉松
|
Java 测试技术 数据库
【阿里云一周要闻第一期】阿里云数据库位列全球第三;《Java开发手册》正式发布;阿里云CDN实现毫秒级全网刷新
要闻预告:突破!阿里云CDN实现毫秒级全网刷新;Gartner宣布阿里云数据库位列全球前三!告别996,走向211!阿里巴巴内部研发效能36计课程对外啦!
13349 0
|
Oracle 关系型数据库 MySQL
“移山”法宝~阿里数据库迁移项目yugong(愚公)开源啦!【内有详解】
阿里数据库迁移项目yugong开源啦!yugong解决了单机Oracle无法满足的扩展性问题,当时也掀起一股去IOE项目的浪潮,愚公这项目因此而诞生,其要解决的目标就是帮助用户完成从Oracle数据迁移到MySQL上,完成去IOE的第一步。DBA的小伙伴们赶快来围观!
19559 0
|
人工智能 安全 物联网
1月15日云栖精选夜读:燃!阿里技术又破世界纪录:机器阅读理解力首次超过人类!
2018年伊始,人工智能取得重大突破!1月11日,由斯坦福大学发起的机器阅读理解领域顶级赛事SQuAD刷新排名,令业界振奋的是人工智能的阅读能力历史上首次超越人类。阿里巴巴凭借82.440的精准率打破了世界纪录,并且超越了人类82.304的成绩。
3228 0
1月15日云栖精选夜读:燃!阿里技术又破世界纪录:机器阅读理解力首次超过人类!