【Pytorch神经网络实战案例】03 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-测试方法

简介: 【Pytorch神经网络实战案例】03 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-测试方法
import torch
import torchvision
from PIL import Image
from torch import nn
image_path="./test_img/dog.png"
image=Image.open(image_path)
print(image) #size=406x479 所以需要转换
# png格式是四个通道,除了RGB三通道外,还有一个透明度通道。
# 所以,我们调用image=image.convert(RGB)保留其颜色通道。
# 当然,如果图片本来就是三个颜色通道,经过此操作,不变。
# 加上这一步后可以适应png、jpg各种格式的图片。
image=image.convert('RGB')
transform=torchvision.transforms.Compose([
        torchvision.transforms.Resize((32,32)),
        torchvision.transforms.ToTensor()])
image=transform(image)
image=image.cuda()
print(image.shape)
# 搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            # Conv2d中
            ##in_channels:输入的通道数目 【必选】
            ##out_channels: 输出的通道数目 【必选】
            ##kernel_size:卷积核的大小,类型为int 或者元组,当卷积是方形的时候,只需要一个整数边长即可,卷积不是方形,要输入一个元组表示 高和宽。【必选】
            ##stride: 卷积每次滑动的步长为多少,默认是 1 【可选】
            ##padding(手动计算):设置在所有边界增加值为0的边距的大小(也就是在feature map 外围增加几圈 0 ),
            ##                 例如当 padding =1 的时候,如果原来大小为 3 × 3 ,那么之后的大小为 5 × 5 。即在外围加了一圈 0 。【可选】
            ##dilation:控制卷积核之间的间距【可选】
            nn.Conv2d(3, 32, 5, 1, 2),
            # MaxPool2d中:
            # #kernel_size(int or tuple) - max pooling的窗口大小,
            # # stride(int or tuple, optional) - max pooling的窗口移动的步长。默认值是kernel_size
            # # padding(int or tuple, optional) - 输入的每一条边补充0的层数
            # # dilation(int or tuple, optional) – 一个控制窗口中元素步幅的参数
            # # return_indices - 如果等于True,会返回输出最大值的序号,对于上采样操作会有帮助
            # # ceil_mode - 如果等于True,计算输出信号大小的时候,会使用向上取整,代替默认的向下取整的操作
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            # nn.Linear()是用于设置网络中的全连接层的,在二维图像处理的任务中,全连接层的输入与输出一般都设置为二维张量,形状通常为[batch_size, size]
            # 相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )
    def forward(self, x):
        x = self.model(x)
        return x
# 加载网络模型
model=torch.load("tudui_0.pth", map_location=torch.device("cuda"))
# model=torch.load("tudui_0.pth", map_location=torch.device("cpu"))
# Expected 4-dimensional input for 4-dimensional weight [32, 3, 5, 5],
# but got 3-dimensional input of size [3, 32, 32] instead
image=torch.reshape(image,(1,3,32,32))
model.eval()
with torch.no_grad():#提升性能
    output=model(image)
print(output)
print(output.argmax(1))
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
244 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
4月前
|
数据采集 机器学习/深度学习 大数据
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
这篇文章详细介绍了C3D架构在行为检测领域的应用,包括训练和测试步骤,使用UCF101数据集进行演示。
138 1
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
184 10
|
4月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
5447 1
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
4月前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
1518 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
4月前
|
PyTorch 算法框架/工具 计算机视觉
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
本文介绍了使用YOLOv4-Tiny进行目标检测的完整流程,包括模型介绍、代码下载、数据集处理、网络训练、预测和评估。
298 2
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
|
4月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
968 1
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
4月前
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
263 0
|
4月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
722 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
4月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
106 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)

热门文章

最新文章

推荐镜像

更多