Pytorch介绍以及基本使用、深入了解、案例分析。(下)

简介: Pytorch介绍以及基本使用、深入了解、案例分析。(下)

2-5、其他常用函数


2-5-1、torch.manual_seed


#  设置生成随机数的种子
#  为了使得结果可以复现。
#  参数:seed,设置的种子。


三、深入了解Pytorch


3-0、训练神经网络


背景:神经网络(NN:Neutral NetWork)是在某些输入数据上执行的嵌套函数的集合。 这些函数由参数(由权重和偏差组成)定义,这些参数在 PyTorch 中存储在张量中。

训练 NN 分为两个步骤:

正向传播:在正向传播中,NN 对正确的输出进行最佳猜测。 它通过其每个函数运行输入数据以进行猜测。即通过模型的每一层运行输入数据以进行预测。 这是正向传播。

反向传播:在反向传播中,NN 根据其猜测中的误差调整其参数。 它通过从输出向后遍历,收集有关函数参数(梯度)的误差导数并使用梯度下降来优化参数来实现。


3-1、叶子节点


叶子节点:用户创建的节点被称之为叶子节点。(即Tensor有一个属性,叫is_leaf。) 所以可以Tensor调用is_leaf属性来判断是否为叶子节点,只有叶子节点才有梯度。非叶子节点的梯度在运行后会被直接释放掉。依赖于叶子节点的节点 requires_grad默认为True。

requires_grad:即是否需要计算梯度,当这个值为True时,我们将会记录tensor的运算过程并为自动求导做准备。,但是并不是每个requires_grad()设为True的值都会在backward的时候得到相应的grad.它还必须为leaf。只有是叶子张量的tensor在反向传播时才会将本身的grad传入到backward的运算中,如果想得到其他tensor在反向传播时的grad,可以使用retain_grad()这个属性。

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
y.backward()
print(a.requires_grad, b.requires_grad, y.requires_grad)
# True True True
# last 计算w的梯度
w.grad
# tensor([5.])

计算图


fe3c0c1eb0e5472a9ee122085c1c5f40.png


3-2、动态图与静态图


1、动态图:运算与搭建同时进行,容易调节。 Pytorch采用动态图机制。

2、静态图:先搭建图,后运算,高效,但是不灵活。 Tensorflow采用静态图机制。


3-3、自动求梯度(autograd)


前言:神经网络通常依赖反向传播求梯度来更新网络参数,深度学习框架可以帮助我们自动地完成这种梯度运算。 Pytorch一般通过反向传播方法backward来实现梯度计算。除此以外,也可以调用torch.autograd.grad函数来实现梯度计算。

注意:backward方法通常在一个标量张量上调用,该方法求得的梯度将存在对应自变量张量的grad属性下。如果调用的张量非标量,则要传入一个和它同形状的gradient参数张量。相当于用该gradient参数张量与调用张量作向量点乘,得到的标量结果再反向传播。


案例一:backward方法在一个标量张量上调用。

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
y.backward()
print(a.requires_grad, b.requires_grad, y.requires_grad)
# True True True
# last 计算w的梯度
w.grad
# tensor([5.])

案例二:backward方法在非标量的反向传播

# 如果调用的张量非标量,则要传入一个和它同形状的gradient参数张量。相当于用该gradient参数张量与调用张量作向量点乘,得到的标量结果再反向传播。 
import numpy as np 
import torch 
# f(x) = a*x**2 + b*x + c
x = torch.tensor([[0.0,0.0],[1.0,2.0]],requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c 
gradient = torch.tensor([[1.0,1.0],[1.0,1.0]])
print("x:",x)
print("y:",y)
y.backward(gradient = gradient)
x_grad = x.grad
print("x_grad:",x_grad)

输出

x: tensor([[0., 0.],
[1., 2.]], requires_grad=True)
y: tensor([[1., 1.],
[0., 1.]], grad_fn=)
x_grad: tensor([[-2., -2.],
[ 0., 2.]])

案例三:使用autograd.grad方法来求导数。

torch.autograd.backward: 求梯度。

参数

outputs:用于求导的张量

inputs:需要梯度的张量

create_graph: 创建导数计算图,用于高阶求导

retain_graph: 保存计算图

grad_outputs: 多梯度权重

import numpy as np 
import torch 
# f(x) = a*x**2 + b*x + c的导数
x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c
# create_graph 设置为 True 将允许创建更高阶的导数 
dy_dx = torch.autograd.grad(y,x,create_graph=True)[0]
print(dy_dx.data)
# 求二阶导数
dy2_dx2 = torch.autograd.grad(dy_dx,x)[0] 
print(dy2_dx2.data)


输出

tensor(-2.)
tensor(2.)


3-4、前向传播、损失和反向传播(Numpy实现)


# 为了加深对于前向传播、损失和反向传播的理解,我们使用Numpy来实现这个流程
import numpy as np
import math
# Create random input and output data
# 用于在线性空间中以均匀步长生成数字序列。
x = np.linspace(-math.pi, math.pi, 2000)
y = np.sin(x)
# 随机初始化权重
# Randomly initialize weights
a = np.random.randn()
b = np.random.randn()
c = np.random.randn()
d = np.random.randn()
# 学习率设置为1e-6
learning_rate = 1e-6
for t in range(5000):
    # Forward pass: compute predicted y
    # y = a + b x + c x^2 + d x^3
    # 预测函数,结果呢,就是得到a、b、c、d四个值使得预测值y_pred尽可能接近y
    y_pred = a + b * x + c * x ** 2 + d * x ** 3
    # Compute and print loss
    # 损失函数,就是预测值减去真实值求和,再开方。
    loss = np.square(y_pred - y).sum()
    # 每100次,输出轮次和损失
    if t % 100 == 99:
        print(t, loss)
    # Backprop to compute gradients of a, b, c, d with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    # 分别计算a、b、c、d的梯度。
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()
    # Update weights
    # 更新a、b、c、d四个参数
    a -= learning_rate * grad_a
    b -= learning_rate * grad_b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d
print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3')


image.png


3-5、前向传播、损失和反向传播(Pytorch实现)


import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y
    y_pred = a + b * x + c * x ** 2 + d * x ** 3
    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    if t % 100 == 99:
        print(t, loss)
    # Backprop to compute gradients of a, b, c, d with respect to loss
    # 
    grad_y_pred = 2.0 * (y_pred - y)
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()
    # Update weights using gradient descent
    a -= learning_rate * grad_a
    b -= learning_rate * grad_b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')


3-6、前向传播、损失和反向传播(使用PyTorch Autograd 来计算梯度)

import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0")  # Uncomment this to run on GPU
# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Create random Tensors for weights. For a third order polynomial, we need
# 4 weights: y = a + b x + c x^2 + d x^3
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
# 这里设置requires_grad为True,即需要计算梯度
a = torch.randn((), device=device, dtype=dtype, requires_grad=True)
b = torch.randn((), device=device, dtype=dtype, requires_grad=True)
c = torch.randn((), device=device, dtype=dtype, requires_grad=True)
d = torch.randn((), device=device, dtype=dtype, requires_grad=True)
learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y using operations on Tensors.
    y_pred = a + b * x + c * x ** 2 + d * x ** 3
    # Compute and print loss using operations on Tensors.
    # Now loss is a Tensor of shape (1,)
    # loss.item() gets the scalar value held in the loss.
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 99:
        print(t, loss.item())
    # Use autograd to compute the backward pass. This call will compute the
    # gradient of loss with respect to all Tensors with requires_grad=True.
    # After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding
    # the gradient of the loss with respect to a, b, c, d respectively.
    # 使用autograd来进行反向传播,计算损失梯度以及各个Tensor的梯度,使用.grad来调用梯度。
    loss.backward()
    # Manually update weights using gradient descent. Wrap in torch.no_grad()
    # because weights have requires_grad=True, but we don't need to track this
    # in autograd.
    # 使用梯度下降手动更新权重。
    with torch.no_grad():
        a -= learning_rate * a.grad
        b -= learning_rate * b.grad
        c -= learning_rate * c.grad
        d -= learning_rate * d.grad
        # Manually zero the gradients after updating weights
        # 在更新梯度之前,将梯度手动设置为0
        a.grad = None
        b.grad = None
        c.grad = None
        d.grad = None
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')



四、数据读取机制Dataloader与Dataset

Dataloader方法

# torch.utils.data.DataLoader
# 参数:
# dataset: Dataset类,决定数据从哪读取以及如何读取
# batchsize:批大小
# num_works: 是否多进程读取数据
# shuffle: 每个epoch是否乱序
# drop_last: 当样本数不能被batchsize整除时,是否舍弃最后一批数据


Epoch、Iteration、Batchsize的含义

# Epoch:所有训练样本都输入到模型中,称为一个Epoch
# Iteration: 一批样本输入到模型中,称之为一个Iteration
# Batchsize: 批大小,决定一个Epoch有多少个Iteration


五、数据预处理transforms模块机制

transforms: 图像预处理模块,对数据进行增强,即对训练集进行变换,使得模型的泛化能力更强。

# torchvision.transforms: 图像预处理模块
# torchvision.datasets: 常用数据集的dataset实现
# torchvision.model: 常用的模型与训练
# transforms: 数据中心化、标准化、缩放、裁剪、旋转、翻转、填充、噪声添加、灰度变换、线性变换、仿射变换、亮度、饱和度以及对比度变换。
# transforms.ToTensor(): 用于对载入的图片数据进行类型转换,把之前构成PIL图片的数据转换成Tensor数据类型的变量,让Pytorch能够对其进行计算和处理。
# transforms.Compose():可以被看做是一种容器,将数据处理方法组合到一起 
# transforms.RandomCrop(): 随机裁剪,对于载入的图片按照我们需要的大小进行随机裁剪。如果传入的是一个整型数据,那么裁剪的长和宽都是这个数值。
# transforms.Normalize(): 数据标准化,这里使用的是标准正态分布变换,这种方法需要使用原始数据的均值(Mean)和标准差(Standard Deviation)来进行数据的标准化,在经过标准化变换之后,数据全部符合均值为0、标准差为1的标准正态分布。参数mean、std,列表形式,如mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], 思考:这里mean和std要在normalize之前自己算好再传进去,否则每次标准化之前都需要把所有的图片都读取一遍再算这两个。
# 功能:逐channel的对图像进行标准化
# output = (input - mean) /std
# mean: 各通道的均值
# std: 各通道的标准差
# inplace: 是否原地操作


六、如何使用CIFAR10数据集

6-1、加载数据

import torch
import torchvision
import torchvision.transforms as transforms
# 每次图像数据先进行ToTensor,即将数据归一化到[0,1](即将数据除以255——缩小范围),之后再进行一个标准化,即减去均值,除以方差,这样可
# 以让数据服从正态分布。
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# root:数据集位置
# train:数据集状态,True为训练集,False为测试集
# download: 是否下载数据集,transform: 针对数据集做出的一些变换
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
# 数据读取的一个重要接口: 将自定义的数据或者Pytorch已有的数据按照batch size封装成Tensor。
# batch_size :每个batch多少个样本
# shuffle (bool, optional) – 设置为True时会在每个epoch重新打乱数据(默认: False).
# num_workers (int, optional) – 用多少个子进程加载数据。0表示数据将在主进程中加载(默认: 0)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')


6-2、展示部分图像

import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()
# get some random training images
# iter: 用来生成迭代器
dataiter = iter(trainloader)
# 得到迭代器的下一个数据
images, labels = dataiter.next()
# show images
# torchvision.utils.make_grid(): 组成图像的网络
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))


a3aad797925c4768bf33611500a9a23c.png


6-3、定义卷积神经网络、损失函数以及优化器

import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)


6-4、训练网络

for epoch in range(2):  # loop over the dataset multiple times
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0
print('Finished Training')


b67a9b3174624c2298c44876a867b539.png


6-5、保存训练过的模型

PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

6-6、加载模型

net = Net()
net.load_state_dict(torch.load(PATH))


6-7、网络在整个数据集上的表现

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

Accuracy of the network on the 10000 test images: 53 %


6-8、在哪些类的表现良好,哪些类的表现不佳

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1
for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))

Accuracy of plane : 50 %

Accuracy of car : 62 %

Accuracy of bird : 51 %

Accuracy of cat : 32 %

Accuracy of deer : 31 %

Accuracy of dog : 35 %

Accuracy of frog : 77 %

Accuracy of horse : 70 %

Accuracy of ship : 71 %

Accuracy of truck : 52 %


更多Transform模块方法详见博客。

Pytorch:transforms二十二种数据预处理方法及自定义transforms方法.

参考文章:

pytorch简介.

PyTorch 的基本使用.

Pytorch基础–torch.Tensor.

torch.randn和torch.rand有什么区别.

pytorch 之 torch.eye()函数.

torch.randint().

torch.stack()的官方解释,详解以及例子.

torch.split().

【one way的pytorch学习笔记】(三)leaf 叶子(张量).

pytorch 中autograd.grad()函数的用法说明.

使用 PYTORCH 进行深度学习:60 分钟的闪电战.

NEURAL NETWORKS.

训练分类器.

Pytorch相关课程-4

重要:!!!PyTorch 中文教程 & 文档.

PyTorch中文教程&文档.


总结


今天是周五哎,好耶。

相关文章
|
机器学习/深度学习 数据可视化 PyTorch
【PyTorch】TensorBoard基本使用
【PyTorch】TensorBoard基本使用
289 0
|
2月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
56 7
|
7月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
7月前
|
机器学习/深度学习 自然语言处理 PyTorch
【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例--使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】
【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例--使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】
|
7月前
|
机器学习/深度学习 资源调度 PyTorch
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
|
7月前
|
机器学习/深度学习 自然语言处理 PyTorch
【从零开始学习深度学习】48.Pytorch_NLP实战案例:如何使用预训练的词向量模型求近义词和类比词
【从零开始学习深度学习】48.Pytorch_NLP实战案例:如何使用预训练的词向量模型求近义词和类比词
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch搭建循环神经网络(RNN)进行文本分类、预测及损失分析(对不同国家的语言单词和姓氏进行分类,附源码和数据集)
PyTorch搭建循环神经网络(RNN)进行文本分类、预测及损失分析(对不同国家的语言单词和姓氏进行分类,附源码和数据集)
389 2
|
机器学习/深度学习 PyTorch 算法框架/工具
机器学习框架PyTorch详解和案列分析
PyTorch 是一个基于 Python 的机器学习框架,由 Facebook 于 2016 年发布。它提供了一组灵活且高效的工具,可用于构建和训练各种深度学习模型。PyTorch 的核心组件是张量,它是一个多维数组,可以用于存储和处理数据。PyTorch 的张量与 NumPy 的数组类似,但也提供了 GPU 加速和自动微分等功能。PyTorch 使用动态计算图,这意味着在运行时可以修改计算图,从而允许更灵活的模型构建和调试。这与 TensorFlow 等框架的静态计算图不同。PyTorch 支持自动微分,可以方便地计算张量的梯度。这为构建和训练深度学习模型提供了便利。PyTorch 提供了构
467 0
|
PyTorch 算法框架/工具 Python
【PyTorch】Transforms基本使用
【PyTorch】Transforms基本使用
96 0