基于双目图像三维建模算法的测量目标物体体积计算matlab仿真

简介: 基于双目图像三维建模算法的测量目标物体体积计算matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
8b4c7c86de749ac3adb21184da54c76c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0d4ed5f3a073fa866a56493df65dc86b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0304b6a9968a6f6ed0f44137bb60ee69_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7164ed968b49215de214df0a99bfa8db_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

     双目立体视觉(Binocular StereoVision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)。双目图像就是通过左右两个摄像头拍摄的图片,存在一定视差。深度就是指实际物体到摄像头的距离。

image.png

  立体视觉意味着人工智能可以通过一对相机来感知图像的深度以及物体的距离。大多数三维相机模型都是基于立体视觉理论和技术的。两台摄像机之间设置一定的距离,这样它们就可以从不同的角度“看”物体。评估两个图像之间的对应关系,人工智能确定到目标的距离,分析,并建立目标的3D结构。

  为了度量体积,需要进行下面的步骤:

1、对一组连续的帧进行累积,这将增加错误恢复的弹性,用于对3D场景进行平均或细化。

2、只在场景中选择产品定义的点。这是通过使用颜色分割、模板匹配或神经网络语义分割来实现的。最快的方法是颜色分割。该方法的缺点是将设置绑定到特定的产品上,如果背景颜色和对象不是很清楚,可能会产生不好的结果。如果GPU优化是可能的,那么使用U形卷积神经网络如U-net和高级U-net,或全卷积神经网络会有较高的性能和分割精度。

3、对一个由产品定义的3D点组成的场景进行聚类。每个簇是一个对象。

4、为每个簇形成一个凸多边形,消除3d场景对象的边缘缺陷

5、使用线性插值恢复缺失的3D点

6、通过基于场景的几何聚类区域积分来计算单个对象的体积。

7、最后,计算所有物体的总体积。

3.MATLAB核心程序

figure;
showExtrinsics(stereoParams);
 
for ij = 1:10
..............................................................
 
figure;
subplot(3,2,1)
imshow(stereoAnaglyph(frameLeftRect, frameRightRect));
title('Rectified Frames');
frameLeftGray  = rgb2gray(frameLeftRect);
frameRightGray = rgb2gray(frameRightRect);
%% 三维重建
points3D = reconstructScene(disparityMap, stereoParams);
.......................................................................
subplot(3,2,6)
mesh(X, Y, Z);
 
%% 体积计算
Heights = sum(sum(abs(Z)));
S = abs((y0(2) - y0(1)) * (x0(2) - x0(1)));
V(ij) = Heights * S ;    % 体积
 
 
clear frameLeft frameRight
clear frameLeftRect frameRightRect
clear frameLeftGray frameRightGray disparityMap points3D ptCloud
clear ptCloudA Temp i j ptCloudB ptCloudC
clear model inlierIndices outlierIndices ptCloudPlane ptCloudD ptCloudE
clear  x y z x0 y0 X Y  Z Heights S
ij
end
 
 
 
 
figure;
plot(V,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.0,0.9,0.0]);
hold on
plot(Vreal,'-bo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('物体编号');
ylabel('体积mm3');
legend('算法计算值','真实值');
 
......................................................
modelNormal = model.Normal;
X_normal = [1 0 0];
Y_normal = [0 1 0];
% Z_normal = [0 0 1];
alpha = acos(dot(modelNormal, X_normal) / (norm(modelNormal) * norm(X_normal)));
beta = acos(dot(modelNormal, Y_normal) / (norm(modelNormal) * norm(Y_normal)));
theta = 0;
 
alpha = -(alpha - pi / 2);
beta = (beta - pi / 2);
 
% 旋转矩阵
R = [cos(beta) * cos(theta)                                         cos(beta) * sin(theta)                                          -sin(beta);
    -cos(alpha) * sin(theta) + sin(alpha) * sin(beta) * cos(theta)  cos(alpha) * cos(theta) + sin(alpha) * sin(beta) * sin(theta)   sin(alpha) * cos(beta);
    sin(alpha) * sin(theta) + cos(alpha) * sin(beta) * cos(theta)   -sin(alpha) * cos(theta) + cos(alpha) * sin(beta) * sin(theta)  cos(alpha) * cos(beta)];
 
Temp(:, 1) = pcIn.Location(:, 1);
Temp(:, 2) = pcIn.Location(:, 2);
Temp(:, 3) = pcIn.Location(:, 3);
 
% 旋转
Temp = Temp * R;
% Temp(:, 3) = Temp(:, 3) - min(Temp(:, 3));
 
% 平移
a = model.Parameters(1);
b = model.Parameters(2);
c = model.Parameters(3);
d = model.Parameters(4);
 
X = -150 : 0.1 : 150;
Y = -150 : 0.1 : 150;
panelZ = -(a * X + b * Y + d) / c;
 
Temp(:, 3) = Temp(:, 3) - median(panelZ);
 
pcOut = pointCloud(Temp);
相关文章
|
5天前
|
机器学习/深度学习 算法 安全
m基于Q-Learning强化学习的路线规划和避障策略matlab仿真
MATLAB 2022a仿真实现了Q-Learning算法在路线规划与避障中的应用,展示了智能体在动态环境中学习最优路径的过程。Q-Learning通过学习动作价值函数Q(s,a)来最大化长期奖励,状态s和动作a分别代表智能体的位置和移动方向。核心程序包括迭代选择最优动作、更新Q矩阵及奖励机制(正奖励鼓励向目标移动,负奖励避开障碍,探索奖励平衡探索与利用)。最终,智能体能在复杂环境中找到安全高效的路径,体现了强化学习在自主导航的潜力。
10 0
|
3天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
21 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
4天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
6天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
6天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
6天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
10 1
|
6天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
6天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
19 1
|
6天前
|
算法 调度
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
|
6天前
|
运维 算法
基于改进遗传算法的配电网故障定位(matlab代码)
基于改进遗传算法的配电网故障定位(matlab代码)

热门文章

最新文章