基于双目图像三维建模算法的测量目标物体体积计算matlab仿真

简介: 基于双目图像三维建模算法的测量目标物体体积计算matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
8b4c7c86de749ac3adb21184da54c76c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0d4ed5f3a073fa866a56493df65dc86b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0304b6a9968a6f6ed0f44137bb60ee69_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7164ed968b49215de214df0a99bfa8db_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

     双目立体视觉(Binocular StereoVision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)。双目图像就是通过左右两个摄像头拍摄的图片,存在一定视差。深度就是指实际物体到摄像头的距离。

image.png

  立体视觉意味着人工智能可以通过一对相机来感知图像的深度以及物体的距离。大多数三维相机模型都是基于立体视觉理论和技术的。两台摄像机之间设置一定的距离,这样它们就可以从不同的角度“看”物体。评估两个图像之间的对应关系,人工智能确定到目标的距离,分析,并建立目标的3D结构。

  为了度量体积,需要进行下面的步骤:

1、对一组连续的帧进行累积,这将增加错误恢复的弹性,用于对3D场景进行平均或细化。

2、只在场景中选择产品定义的点。这是通过使用颜色分割、模板匹配或神经网络语义分割来实现的。最快的方法是颜色分割。该方法的缺点是将设置绑定到特定的产品上,如果背景颜色和对象不是很清楚,可能会产生不好的结果。如果GPU优化是可能的,那么使用U形卷积神经网络如U-net和高级U-net,或全卷积神经网络会有较高的性能和分割精度。

3、对一个由产品定义的3D点组成的场景进行聚类。每个簇是一个对象。

4、为每个簇形成一个凸多边形,消除3d场景对象的边缘缺陷

5、使用线性插值恢复缺失的3D点

6、通过基于场景的几何聚类区域积分来计算单个对象的体积。

7、最后,计算所有物体的总体积。

3.MATLAB核心程序

figure;
showExtrinsics(stereoParams);
 
for ij = 1:10
..............................................................
 
figure;
subplot(3,2,1)
imshow(stereoAnaglyph(frameLeftRect, frameRightRect));
title('Rectified Frames');
frameLeftGray  = rgb2gray(frameLeftRect);
frameRightGray = rgb2gray(frameRightRect);
%% 三维重建
points3D = reconstructScene(disparityMap, stereoParams);
.......................................................................
subplot(3,2,6)
mesh(X, Y, Z);
 
%% 体积计算
Heights = sum(sum(abs(Z)));
S = abs((y0(2) - y0(1)) * (x0(2) - x0(1)));
V(ij) = Heights * S ;    % 体积
 
 
clear frameLeft frameRight
clear frameLeftRect frameRightRect
clear frameLeftGray frameRightGray disparityMap points3D ptCloud
clear ptCloudA Temp i j ptCloudB ptCloudC
clear model inlierIndices outlierIndices ptCloudPlane ptCloudD ptCloudE
clear  x y z x0 y0 X Y  Z Heights S
ij
end
 
 
 
 
figure;
plot(V,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.0,0.9,0.0]);
hold on
plot(Vreal,'-bo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('物体编号');
ylabel('体积mm3');
legend('算法计算值','真实值');
 
......................................................
modelNormal = model.Normal;
X_normal = [1 0 0];
Y_normal = [0 1 0];
% Z_normal = [0 0 1];
alpha = acos(dot(modelNormal, X_normal) / (norm(modelNormal) * norm(X_normal)));
beta = acos(dot(modelNormal, Y_normal) / (norm(modelNormal) * norm(Y_normal)));
theta = 0;
 
alpha = -(alpha - pi / 2);
beta = (beta - pi / 2);
 
% 旋转矩阵
R = [cos(beta) * cos(theta)                                         cos(beta) * sin(theta)                                          -sin(beta);
    -cos(alpha) * sin(theta) + sin(alpha) * sin(beta) * cos(theta)  cos(alpha) * cos(theta) + sin(alpha) * sin(beta) * sin(theta)   sin(alpha) * cos(beta);
    sin(alpha) * sin(theta) + cos(alpha) * sin(beta) * cos(theta)   -sin(alpha) * cos(theta) + cos(alpha) * sin(beta) * sin(theta)  cos(alpha) * cos(beta)];
 
Temp(:, 1) = pcIn.Location(:, 1);
Temp(:, 2) = pcIn.Location(:, 2);
Temp(:, 3) = pcIn.Location(:, 3);
 
% 旋转
Temp = Temp * R;
% Temp(:, 3) = Temp(:, 3) - min(Temp(:, 3));
 
% 平移
a = model.Parameters(1);
b = model.Parameters(2);
c = model.Parameters(3);
d = model.Parameters(4);
 
X = -150 : 0.1 : 150;
Y = -150 : 0.1 : 150;
panelZ = -(a * X + b * Y + d) / c;
 
Temp(:, 3) = Temp(:, 3) - median(panelZ);
 
pcOut = pointCloud(Temp);
相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
78 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
1天前
|
算法 图形学 数据安全/隐私保护
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。
|
22小时前
|
算法
MATLAB在风险管理中的应用:从VaR计算到压力测试
本文介绍如何使用MATLAB进行风险管理,涵盖风险度量(如VaR)、压力测试和风险分解。通过历史模拟法、参数法和蒙特卡洛模拟法计算VaR,评估投资组合在极端市场条件下的表现,并通过边际VaR和成分VaR识别风险来源。结合具体案例和代码实现,帮助读者掌握MATLAB在风险管理中的应用,确保投资组合的稳健性。
|
21小时前
|
算法 数据安全/隐私保护
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
|
5天前
|
存储 算法 数据可视化
Weevil-Optimizer象鼻虫优化算法的matlab仿真实现
本项目实现了Weevil-Optimizer(象鼻虫优化算法)的MATLAB仿真,展示算法在不同适应度函数下的优化收敛曲线。程序通过智能搜索策略模拟象鼻虫觅食行为,在解空间中寻找最优解。核心代码包括排序、选择、更新操作,并绘制结果图示。测试环境为MATLAB 2022A,支持Ackley、Beale、Booth、Rastrigin和Rosenbrock函数的对比分析。 虽然Weevil-Optimizer是一个虚构的概念,但其设计思路展示了如何基于自然界生物行为模式开发优化算法。完整程序运行后无水印,提供清晰的可视化结果。
|
5天前
|
传感器 算法 数据安全/隐私保护
基于Affine-Sift算法的图像配准matlab仿真
本项目展示了Affine-SIFT算法的运行效果(无水印),适用于图像配准任务,能够处理旋转、缩放、平移及仿射变换。程序基于MATLAB2022A开发,包含完整代码与操作视频。核心步骤为:先用SIFT提取特征点,再通过仿射变换实现高精度对准。
|
6天前
|
机器学习/深度学习 算法 数据可视化
基于线性核函数的SVM数据分类算法matlab仿真
本程序基于线性核函数的SVM算法实现数据分类,使用MATLAB2022A版本运行。程序生成随机二维数据并分为两组,通过自定义SVM模型(不依赖MATLAB工具箱)进行训练,展示不同惩罚参数C下的分类结果及决策边界。SVM通过寻找最优超平面最大化类别间隔,实现高效分类。 核心代码包括数据生成、模型训练和结果可视化,最终绘制了两类数据点及对应的决策边界。此实现有助于理解SVM的工作原理及其在实际应用中的表现。
|
9月前
|
存储 编解码 安全
带三维重建和还原的PACS源码 医学影像PACS系统源码
带三维重建和还原的PACS源码 医学影像PACS系统源码 PACS及影像存取与传输系统”( Picture Archiving and Communication System),为以实现医学影像数字化存储、诊断为核心任务,从医学影像设备(如CT、CR、DR、MR、DSA、RF等)获取影像,集中存储、综合管理医学影像及病人相关信息,建立数字化工作流程。系统可实现检查预约、病人信息登记、计算机阅片、电子报告书写、胶片打印、数据备份等一系列满足影像科室日常工作的功能,并且由于影像数字化存储,用户可利用影像处理与测量技术辅助诊断、方便快捷地查找资料或利用网络将资料传输至临床科室,还可与医院HIS、L
121 0
|
9月前
|
存储 数据采集 固态存储
带三维重建和还原功能的医学影像管理系统(pacs)源码
带三维重建和还原功能的医学影像管理系统(pacs)源码
149 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等