基于双目图像三维建模算法的测量目标物体体积计算matlab仿真

简介: 基于双目图像三维建模算法的测量目标物体体积计算matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
8b4c7c86de749ac3adb21184da54c76c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0d4ed5f3a073fa866a56493df65dc86b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0304b6a9968a6f6ed0f44137bb60ee69_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7164ed968b49215de214df0a99bfa8db_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

     双目立体视觉(Binocular StereoVision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)。双目图像就是通过左右两个摄像头拍摄的图片,存在一定视差。深度就是指实际物体到摄像头的距离。
AI 代码解读

image.png

  立体视觉意味着人工智能可以通过一对相机来感知图像的深度以及物体的距离。大多数三维相机模型都是基于立体视觉理论和技术的。两台摄像机之间设置一定的距离,这样它们就可以从不同的角度“看”物体。评估两个图像之间的对应关系,人工智能确定到目标的距离,分析,并建立目标的3D结构。

  为了度量体积,需要进行下面的步骤:
AI 代码解读

1、对一组连续的帧进行累积,这将增加错误恢复的弹性,用于对3D场景进行平均或细化。

2、只在场景中选择产品定义的点。这是通过使用颜色分割、模板匹配或神经网络语义分割来实现的。最快的方法是颜色分割。该方法的缺点是将设置绑定到特定的产品上,如果背景颜色和对象不是很清楚,可能会产生不好的结果。如果GPU优化是可能的,那么使用U形卷积神经网络如U-net和高级U-net,或全卷积神经网络会有较高的性能和分割精度。

3、对一个由产品定义的3D点组成的场景进行聚类。每个簇是一个对象。

4、为每个簇形成一个凸多边形,消除3d场景对象的边缘缺陷

5、使用线性插值恢复缺失的3D点

6、通过基于场景的几何聚类区域积分来计算单个对象的体积。

7、最后,计算所有物体的总体积。

3.MATLAB核心程序

figure;
showExtrinsics(stereoParams);
 
for ij = 1:10
..............................................................
 
figure;
subplot(3,2,1)
imshow(stereoAnaglyph(frameLeftRect, frameRightRect));
title('Rectified Frames');
frameLeftGray  = rgb2gray(frameLeftRect);
frameRightGray = rgb2gray(frameRightRect);
%% 三维重建
points3D = reconstructScene(disparityMap, stereoParams);
.......................................................................
subplot(3,2,6)
mesh(X, Y, Z);
 
%% 体积计算
Heights = sum(sum(abs(Z)));
S = abs((y0(2) - y0(1)) * (x0(2) - x0(1)));
V(ij) = Heights * S ;    % 体积
 
 
clear frameLeft frameRight
clear frameLeftRect frameRightRect
clear frameLeftGray frameRightGray disparityMap points3D ptCloud
clear ptCloudA Temp i j ptCloudB ptCloudC
clear model inlierIndices outlierIndices ptCloudPlane ptCloudD ptCloudE
clear  x y z x0 y0 X Y  Z Heights S
ij
end
 
 
 
 
figure;
plot(V,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.0,0.9,0.0]);
hold on
plot(Vreal,'-bo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('物体编号');
ylabel('体积mm3');
legend('算法计算值','真实值');
 
......................................................
modelNormal = model.Normal;
X_normal = [1 0 0];
Y_normal = [0 1 0];
% Z_normal = [0 0 1];
alpha = acos(dot(modelNormal, X_normal) / (norm(modelNormal) * norm(X_normal)));
beta = acos(dot(modelNormal, Y_normal) / (norm(modelNormal) * norm(Y_normal)));
theta = 0;
 
alpha = -(alpha - pi / 2);
beta = (beta - pi / 2);
 
% 旋转矩阵
R = [cos(beta) * cos(theta)                                         cos(beta) * sin(theta)                                          -sin(beta);
    -cos(alpha) * sin(theta) + sin(alpha) * sin(beta) * cos(theta)  cos(alpha) * cos(theta) + sin(alpha) * sin(beta) * sin(theta)   sin(alpha) * cos(beta);
    sin(alpha) * sin(theta) + cos(alpha) * sin(beta) * cos(theta)   -sin(alpha) * cos(theta) + cos(alpha) * sin(beta) * sin(theta)  cos(alpha) * cos(beta)];
 
Temp(:, 1) = pcIn.Location(:, 1);
Temp(:, 2) = pcIn.Location(:, 2);
Temp(:, 3) = pcIn.Location(:, 3);
 
% 旋转
Temp = Temp * R;
% Temp(:, 3) = Temp(:, 3) - min(Temp(:, 3));
 
% 平移
a = model.Parameters(1);
b = model.Parameters(2);
c = model.Parameters(3);
d = model.Parameters(4);
 
X = -150 : 0.1 : 150;
Y = -150 : 0.1 : 150;
panelZ = -(a * X + b * Y + d) / c;
 
Temp(:, 3) = Temp(:, 3) - median(panelZ);
 
pcOut = pointCloud(Temp);
AI 代码解读
相关文章
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
79 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
152 68
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。

热门文章

最新文章