MySql查询不区分大小写解决方案

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySql查询不区分大小写解决方案

背景

当我们输入不管大小写都能查询到数据,例如:输入 lingyejun 或者Lingyejun ,LingYeJun都能查询同样的结果,说明查询条件对大小写不敏感。

CREATE TABLE NAME(name VARCHAR(10));

对这个表,缺省情况下,下面两个查询的结果是一样的:

SELECT * FROM TABLE NAME WHERE name='lingyejun';

SELECT * FROM TABLE NAME WHERE name='Lingyejun';

办法

解决方案一:

于是怀疑Mysql的问题。做个实验:直接使用客户端用sql查询数据库。 发现的确是大小不敏感 。

通过查询资料发现需要设置collate(校对) 。 collate规则

  • *_bin: 表示的是binary case sensitive collation,也就是说是区分大小写的
  • *_cs: case sensitive collation,区分大小写
  • *_ci: case insensitive collation,不区分大小写

一般而言我们设置字符集注意以下两种:

utf8_general_ci --不区分大小写

utf8_bin--区分大小写

当字符设置为不区分大小写时的解决办法:

1.可以将查询条件用binary()括起来。  比如:  

select * from TableA where binary columnA ='lingyejun';

2. 可以修改该字段的collation 为 binary

比如:

ALTER TABLE TABLENAME MODIFY COLUMN COLUMNNAME VARCHAR(50) BINARY CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL;

解决方案二:

mysql查询默认是不区分大小写的 如:

select * from some_table where str=‘lingyejun';
select * from some_table where str='LINGYEJUN';

得到的结果是一样的,如果我们需要进行区分的话可以按照如下方法来做:

第一种方法:

要让mysql查询区分大小写,可以:

select * from some_table where binary str='lingyejun'
select * from some_table where binary str='LINGYEJUN'

第二方法:

在建表时时候加以标识

create table some_table(
   str char(20) binary
)

原理:

对于CHAR、VARCHAR和TEXT类型,BINARY属性可以为列分配该列字符集的 校对规则。BINARY属性是指定列字符集的二元 校对规则的简写。排序和比较基于数值字符值。因此也就自然区分了大小写。

 

本篇文章如有帮助到您,请给「翎野君」点个赞,感谢您的支持。


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
4天前
|
SQL 前端开发 关系型数据库
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
33 9
|
5天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
20 3
|
11天前
|
SQL NoSQL 关系型数据库
2024Mysql And Redis基础与进阶操作系列(5)作者——LJS[含MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页等详解步骤及常见报错问题所对应的解决方法]
MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页、INSERT INTO SELECT / FROM查询结合精例等详解步骤及常见报错问题所对应的解决方法
|
9天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
46 0
|
10天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
41 0
|
28天前
|
存储 SQL 关系型数据库
Mysql学习笔记(二):数据库命令行代码总结
这篇文章是关于MySQL数据库命令行操作的总结,包括登录、退出、查看时间与版本、数据库和数据表的基本操作(如创建、删除、查看)、数据的增删改查等。它还涉及了如何通过SQL语句进行条件查询、模糊查询、范围查询和限制查询,以及如何进行表结构的修改。这些内容对于初学者来说非常实用,是学习MySQL数据库管理的基础。
106 6
|
2天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
14 4
|
26天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
58 3
Mysql(4)—数据库索引
|
28天前
|
SQL Ubuntu 关系型数据库
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
本文为MySQL学习笔记,介绍了数据库的基本概念,包括行、列、主键等,并解释了C/S和B/S架构以及SQL语言的分类。接着,指导如何在Windows和Ubuntu系统上安装MySQL,并提供了启动、停止和重启服务的命令。文章还涵盖了Navicat的使用,包括安装、登录和新建表格等步骤。最后,介绍了MySQL中的数据类型和字段约束,如主键、外键、非空和唯一等。
64 3
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
|
11天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
51 2
下一篇
无影云桌面