Redis热点大Key的优化过程

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis热点大Key的优化过程

概念介绍

热点Key

产生的背景

用户消费的数据远大于生产的数据(热卖商品、热点新闻、热点评论、热门明星直播)。

对于电商网站中,我们经常可以会遇到热门商品的抢购或者秒杀场景以及事先经过广告投放等措施进行定向引流,这样就会导致某个热卖商品在短时间内涌入大量流量。

比如,双十一期间某些热门商品的降价促销,当这其中的某一件商品被数万次点击浏览或者购买时,会形成一个较大的需求量,这种情况下就会造成热点问题。

导致的问题及解决方案

热点Key产生问题的原因

请求到的分片过于集中,超过单台Server的性能极限。

在服务端读数据进行访问时,往往会对数据进行分片切分。此过程中会在某一主机Server上对相应的Key进行访问,当访问超过Server极限时,就会导致热点 Key 问题的产生。

热点Key的危害

  • 流量集中,达到物理网卡上限。
  • 请求过多,缓存分片服务被打垮。
  • DB 击穿,引起业务雪崩。

解决方式

  • 服务端缓存:即将热点数据缓存至服务端的内存中。
  • 备份热点Key:即将热点Key+随机数,随机分配至Redis其他节点中。这样访问热点key的时候就不会全部命中到一台机器上了。

大Key

Redis使用过程中经常会有各种大key的情况, 比如单个简单的key存储的value很大。

由于redis是单线程运行的,如果一次操作的value很大会对整个redis的响应时间造成负面影响,导致IO网络拥塞。

解决方案

将整存整取的大对象,分拆为多个小对象。可以尝试将对象分拆成几个key-value, 使用multiGet获取值,这样分拆的意义在于分拆单次操作的压力,将操作压力平摊到多个redis实例中,降低对单个redis的IO影响;

一次实战优化过程

问题简介

在电商网站的一次营销事件中,通过相关的引流操作,将大量流量在指定时间引流到了商品抢购页面,在抢购页中涉及到的几个后台接口,其中有一两个都会去查商品信息。

在商品模块对外暴露了一个对条件查询的接口,在上述的场景下就会短时间高频次的调用这个接口。

根据这个场景发现,商品数据,在活动期间会有很大的访问量,这是一个热点Key。另外由于前期错误的设置导致了这个热点Key又是一个大Key。

所以我们的优化过程就是按照如果解决掉热点Key和大Key的这两个问题进行的。之前并没有上述的概念,都是摸着石头过河,渐渐地思路才清晰起来。

解决过程

第一版

直接按条件查询数据库。

public List<ReturnObject> version1(QueryCriterionDto queryDto) {
    // 1.直接按照条件查询数据库
    // 2.将查询到的结果返回
}

第二版

将全量数据缓存到Redis中,查出数据后再进行过滤返回。

public List<ReturnObject> version2(QueryCriterionDto queryDto) {
    // 1.先尝试从缓存中查询全量数据
    // 2.如果不存在,则从数据库中把全量数据出,并缓存到Redis中
    // 3.对全量数据进行过滤筛选
    // 4.返回最终的结果
}

第三版:

仍然将全量数据缓存到Redis中,但是只缓存必要的数据,比如过滤条件,从缓存中拿出全部的数据后,进行过滤后列出需要返回的对象唯一id,再根据这一批唯一id去缓存中查单个的对象出来,最后拼成List返回。

public List<ReturnObject> version3(QueryCriterionDto queryDto) {
    // 1.先尝试从缓存中查询全量数据(这里的全量数据指的不是ReturnObject,而是另外一个只用于过滤筛选的简单对象)
    // 2.如果不存在,则从数据库中把全量数据出,转成简单对象,并缓存到Redis中
    // 3.简单对象中包含所有的过滤条件,过滤后得到一组最终的idList(每个id在缓存中对应一个ReturnObject)
    // 4.根据上面得到的idList,然后循环get取出最后的返回结果
}

第四版

将每次的获取单个对象的get操作,调整成mget这样就可以一次操作取出多个对象出来,然后再跟查询的keys比较一下size,如果少的话,再尝试从库中查一次,把少的数据补上。

public List<ReturnObject> version4(QueryCriterionDto queryDto) {
    // 1.先尝试从缓存中查询全量数据(这里的全量数据指的不是ReturnObject,而是另外一个只用于过滤筛选的简单对象)
    // 2.如果不存在,则从数据库中把全量数据出,转成简单对象,并缓存到Redis中
    // 3.简单对象中包含所有的过滤条件,过滤后得到一组最终的idList(每个id在缓存中对应一个ReturnObject)
    // 4.对上面得到的idList进行分组比如每50个keys作为一组,然后使用multiGet一次获取50个对象,从而降低redis调用次数
    // 5.针对从redis中没有取到的对象,再尝试从库中查询,进行填补
    // 6.返回最终的对象
}

 

参考文章:

https://cloud.tencent.com/dev...

https://blog.csdn.net/youanyy...

https://segmentfault.com/a/11...

 

如果对您有帮助,请不要忘了给翎野君点赞。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
2月前
|
消息中间件 缓存 NoSQL
Redis 高并发竞争 key ,如何解决这个难点?
本文主要探讨 Redis 在高并发场景下的并发竞争 Key 问题,以及较为常用的两种解决方案(分布式锁+时间戳、利用消息队列)。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
Redis 高并发竞争 key ,如何解决这个难点?
|
2月前
|
存储 监控 NoSQL
Redis大Key问题如何排查?如何解决?
Redis大Key问题如何排查?如何解决?
86 0
Redis大Key问题如何排查?如何解决?
|
2月前
|
存储 NoSQL 算法
面试官:Redis 大 key 多 key,你要怎么拆分?
本文介绍了在Redis中处理大key和多key的几种策略,包括将大value拆分成多个key-value对、对包含大量元素的数据结构进行分桶处理、通过Hash结构减少key数量,以及如何合理拆分大Bitmap或布隆过滤器以提高效率和减少内存占用。这些方法有助于优化Redis性能,特别是在数据量庞大的场景下。
面试官:Redis 大 key 多 key,你要怎么拆分?
|
3月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
127 9
|
3月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
110 5
|
3月前
|
NoSQL Unix Redis
Redis 键(key)
10月更文挑战第15天
44 1
|
3月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万数据量的优化实录
【10月更文挑战第6天】 在现代互联网应用中,随着用户量的增加和业务逻辑的复杂化,数据量级迅速增长,这对后端数据库系统提出了严峻的挑战。尤其是当数据量达到百万级别时,传统的数据库解决方案往往会遇到性能瓶颈。本文将分享一次使用MySQL与Redis协同优化大规模数据统计的实战经验。
191 3
|
3月前
|
NoSQL 关系型数据库 BI
记录一次MySQL+Redis实现优化百万数据统计的方式
【10月更文挑战第13天】 在处理百万级数据的统计时,传统的单体数据库往往力不从心,这时结合使用MySQL和Redis可以显著提升性能。以下是一次实际优化案例的详细记录。
184 1
|
3月前
|
缓存 监控 负载均衡
如何解决Redis热点Key问题?技术干货分享
【10月更文挑战第2天】在Redis的使用过程中,热点Key问题是一个常见的性能瓶颈。热点Key指的是那些被频繁访问的Key,它们可能导致Redis服务器的负载不均衡,进而影响整体性能。本文将深入探讨热点Key问题的成因、影响以及多种解决方案,帮助读者在实际工作中有效应对这一挑战。
138 3
|
3月前
|
NoSQL Redis
redis 的 key 过期策略是怎么实现的(经典面试题)超级通俗易懂的解释!
本文解释了Redis实现key过期策略的方式,包括定期删除和惰性删除两种机制,并提到了Redis的内存淘汰策略作为补充,以确保过期的key能够被及时删除。
64 1