AMiner发布:2022年人工智能全球最具影响力学者榜单AI 2000(1)

简介: AMiner发布:2022年人工智能全球最具影响力学者榜单AI 2000
【新智元导读】2022 年人工智能全球最具影响力学者榜单——AI 2000 重磅发布!中国提名学者数量排名第二,谷歌Meta微软顶级AI学者数量最多。


2022 年 1 月 25 日,2022 年人工智能全球最具影响力学者榜单——AI 2000 重磅发布!

人工智能全球最具影响力学者榜单(简称“AI 2000”),由清华大学计算机系 AMiner 团队联合智谱AI、清华—中国工程科技知识中心知识智能联合研究中心共同发布,旨在通过 AMiner 学术数据在全球范围内遴选过去十年人工智能学科最有影响力、最具活力的顶级学者。自 2020 年首届 AI 2000 发布以来,受到各界高度认可,已成为 AI 领域的重要风向标之一。其 2020 和 2021 年度相关榜单得到权威媒体和学术机构的报道,如人民日报、新华网、科技日报及加州伯克利分校、康奈尔大学等国际知名院校。2022 年度榜单基于 2012-2021 十年间人工智能领域 46 个顶级期刊会议收录的共计 185,241 篇论文和 258,268 位作者的学术数据,榜单涵盖了人工智能 20 个核心领域(经典人工智能、机器学习、计算机视觉、自然语言处理、机器人、知识工程、语音识别、数据挖掘、信息检索与推荐、数据库、人机交互、计算机图形、多媒体、可视化、安全与隐私、计算机网络、操作系统、计算理论、芯片技术和物联网 20 个核心领域)以及一个新兴领域——虚拟现实。

AI 2000 评选规则


AI 2000 涵盖与人工智能相关的 20 个核心领域以及新兴领域。每年遴选时,参考过去 10 年各领域最有影响力的会议和期刊发表论文的引用情况。(详见:https://www.aminer.cn/ai2000/about/introduction

排名前 10 名的学者荣膺该领域当年【AI 2000 最具影响力学者奖】,排名 11 至 100 名的学者荣获【AI 2000 最具影响力学者提名奖】。由于虚拟现实领域与计算机视觉、计算机图形学和人机交互领域重复性较高,所以本年度的 AI 2000 该领域的学者只参与排名,不设奖项。榜单通过 AMiner 系统中所收录的学术发表数据及 Google Scholar 的引用数据(截止于 2021 年 10 月 31 日)用计算机算法自动化生成榜单排名,即 AI 2000 Index 指数,确保了榜单的客观、公平、公正、公开。评选过程综合参考了计算机领域公认的权威性机构(包括:ACM—Association for Computing Machinery 美国计算机协会;CCF—China Computer Federation 中国计算机学会;IEEE—Institute of Electrical and Electronics Engineers 电气和电子工程师协会)中关于学科领域及顶级会议和期刊的分类。AI 2000 Index 指数旨在计算每位作者在科研出版物上的学术贡献度。根据之前榜单收到的大量反馈,在 2022 年度榜单中,AI 2000 Index 按照论文中作者列表的顺序向作者按比例分发贡献度,具体计算方式参见榜单网站。各领域中的所有顶级论文被用来计算每位学者在该领域中的 AI 2000 index 指数。因此,本年度 AI 2000 榜单与往年不同的地方在于更加倾向于挖掘在近 10 年里的具有影响力的一作(年轻)学者。2022 年度 AI 2000 人工智能全球最具影响力学者(200 人次)和提名学者(1800 人次)分布于全球不同机构。由于存在同一学者入选不同领域的现象,经过去重处理后,AI 2000 人工智能全球最具影响力(提名)学者共计 1896 位。

各领域榜首学者


AI 2000 榜单 21 个子领域的榜首人才,主要聚集于美国,以及中国、新加坡、加拿大、德国等国家,各领域榜首人才的详细信息如表所示。

图:各领域榜首学者及所在国家

具体而言,美国依旧在人工智能人才上占有强势领先位置,囊括 13 个领域的榜首学者。中国收入两个榜首学者,分别是信息检索与推荐和多媒体两个领域;德国收入两个榜首,分别是机器人和可视化两个领域;另外还有意大利取得物联网领域榜首;日本取得计算机图形领域榜首。值得注意的是,相较于去年美国人才占据了 16 个人工智能子领域的榜首,今年出现了更多的上榜国家,这间接表明其他国家在逐渐强化自己的优势领域,壮大自己的技术力量。

入选学者的国家分布

从学者国家分布来看,美国入选 AI 2000 学者及提名学者的数量最多,有 1146 人次,占比 57.3%,超过总人数的一半以上。中国排在美国之后,位列第二,有 232 人次,占比 11.6%。英国位列第三,有 115 人次,占比 5.75%。德国位列第四,人次未超过 100,但依旧是欧盟学者数量最多的国家。整个欧洲学者数量表现较上年有所流失。

图:AI 2000 学者及提名学者的国家分布

图:AI 2000 学者及提名学者的国家分布图

入选学者的机构分布


从 AI 2000 最具影响力学者入选数量来看,谷歌、Meta(原 Facebook)及微软三大科技公司占据优势地位,公司拥有的顶级 AI 学者数量,无论是 top 10 还是 top 100 数量,均远多于高校。其中位居首位的谷歌公司,共 181 人次入选榜单,也是唯一一家学者数过百的机构。从机构所在的国家分布来看,清华大学相较于去年,遗憾离开前十名的位置。前十名均为美国机构,且美国机构学者总体人数遥遥领先。阿里巴巴位列第二十位,相较于去年有所提升。

图:AI 2000 学者及提名学者机构分布图:AI 2000 学者及提名学者的机构分布图

最具影响力前十



相关文章
|
2月前
|
机器学习/深度学习 人工智能 运维
AI望远镜:人工智能是如何发现“藏在宇宙角落的新星系”的?
AI望远镜:人工智能是如何发现“藏在宇宙角落的新星系”的?
168 64
|
3月前
|
人工智能 JavaScript
生成式人工智能(GAI)认证:2025最值得考的AI证书!
生成式人工智能(GAI)认证由全球教育巨头 Pearson 推出,融合技术原理、实战应用与伦理合规的三维培养框架。该项目与 AI 领域领先企业合作开发,涵盖提示优化、基础提示工程及社会影响等核心内容,助力学习者全面掌握 GAI 技能。中文版认证已落地中国,由达内教育与恒利联创战略合作推广,深度融合本土 AI 平台。作为高含金量的全球认可证书,GAI 认证可提升职业竞争力,满足行业对复合型 AI 人才的需求,为个人和企业开辟数字时代新机遇。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
2025人工智能证书|2025年人工智能行业AI证书如何选择?
在2025年AI浪潮中,生成式AI已成为职场核心竞争力。企业招聘将“AI能力”设为基础门槛,如何选择有价值的AI认证?本文从行业趋势、证书价值、备考策略及职业规划四大维度解析。GAI认证由培生推出,涵盖核心技术与实际应用,结合理论与实践考核,助力职业发展。它不仅评估技术能力,还注重伦理法律等复合技能。备考需分阶段规划,善用官方资源,注重实践。无论转型、深耕还是管理晋升,GAI认证均适合作为起点,抢占AI时代先机。
|
4月前
|
人工智能 自然语言处理 机器人
2025年AI客服机器人推荐榜单:主流厂商与创新解决方案
本文探讨2025年AI客服机器人的行业趋势,从技术迭代、场景需求到数据安全等角度分析,并提供选型指南。文中强调技术能力(如大模型适配)、场景适配性、数据安全及全周期服务等关键标准,推荐合力亿捷、阿里云、科大讯飞、Salesforce等厂商,助企业理性选择适合的工具。
466 7
|
4月前
|
人工智能 算法
我国“AI+X”跨界人才培养:如何通过职业技能培训,把握人工智能就业机遇?
在“AI+X”时代,人工智能与各行业的深度融合正在重塑职业图景和人才标准。跨界能力成为核心竞争力,要求从业者既能将专业问题转化为AI可理解的框架,又能将技术输出转化为实际业务价值。这推动了职业技能培训从单一技术传授向复合能力培养转型,强调知识架构重组、场景化学习和伦理判断力培养。个人发展需构建“认知-实践-认证”的闭环路径,持续更新技能以适应快速迭代的技术环境。未来属于既懂行业本质又能驾驭技术的跨界者,他们将成为推动社会进步的关键力量。职业技能培训的使命在于赋能学习者,在技术与人文之间找到平衡,实现从专业从业者到领域创新者的蜕变。
|
4月前
|
机器学习/深度学习 人工智能 安全
AI的万亿商机:红杉资本眼中的人工智能新时代
AI不仅仅是不可避免的趋势,而是已经到来的现实,其市场规模将远超过去的任何一次技术变革。这不是一场可以观望的比赛,而是一场必须全力以赴参与的革命。
233 22
|
5月前
|
人工智能 算法
中国AI应用排行榜3月榜单发布,「AI四大天王」格局正式形成
2025年3月,中国AI应用排行榜发布!由AIGCRank制作,基于国内主流App市场及算法备案数据筛选200+款代表性AI应用排名。榜单显示夸克、DeepSeek、豆包、腾讯元宝形成“AI四大天王”格局,头部生态壁垒加深。通用助手主导市场,垂类赛道如教育、生成工具等多点开花。报告揭示中国AI市场进入“头部固化+垂类爆发”阶段,未来商业化路径将成为垂类应用突破关键。
854 0
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
ai人工智能课程学什么
本内容全面介绍了AI课程的核心体系,涵盖基础理论、核心算法、应用领域及伦理责任等方面。从数学基础与编程技能到机器学习和深度学习算法,再到自然语言处理与计算机视觉等应用领域,系统阐述了AI技术的全貌。同时探讨了开发框架如TensorFlow和PyTorch的使用,并关注AI伦理与社会责任。通过分步验证与实践经验,帮助学习者规避AI局限性。展望未来,生成式人工智能等新兴技术将持续推动课程发展,助力职业成长与社会进步。

热门文章

最新文章