python框架之Pyspider和Scrapy的区别

简介: python框架之Pyspider和Scrapy的区别

对于一些简单的爬虫需求来说,只是简单的利用 requsets, xpath 等爬虫库就可以。但是如果是更复杂的需求这些简单的爬虫库远远无法达到一个爬虫框架的要求。一个爬虫框架的雏形,应该包含调度器、队列、请求对象等。我们平时写的爬虫程序,连最基本的框架都不具备。
但是这样的架构和模块还是太简单,远远达不到一个框架的要求。如果我们将各个组件独立出来,定义成不同的模块,也就慢慢形成了一个框架。
有了框架之后,我们就不必关心爬虫的全部流程,异常处理、任务调度等都会集成在框架中。我们只需要关心爬虫的核心逻辑部分即可,如页面信息的提取,下一步请求的生成等。这样,不仅开发效率会提高很多,而且爬虫的健壮性也更强。
爬虫框架有很多可以选择,这里我们重点带大家了解下pyspisder和Scrapy的区别。
1、pyspider 调试非常方便,WebUI 操作便捷直观,在 Scrapy 中则是使用 parse 命令进行调试,论方便程度不及 pyspider。
2、PySpider 中内置了 PyQuery 作为选择器,在 Scrapy 中对接了 XPath、CSS 选择器和正则匹配。
3、如果要快速实现一个页面的抓取,推荐使用 pyspider,开发更加便捷,如快速抓取某个普通新闻网站的新闻内容。如果要应对反爬程度很强、超大规模的抓取,推荐使用 Scrapy,如抓取封 IP、封账号、高频验证的网站的大规模数据采集。
比如一些大型新闻网站数据的获取就需要使用Scrapy,在访问过程中遇到封IP可以通过添加IP池来解决,IP池的选择最好根据IP延迟,速度,稳定性来进行重点测试。网络上有很多的代理商,综合各方面数据对比,亿牛云提供的爬虫隧道加强版值得推荐给大家。比如我们使用隧道代理来实现大型新闻网站数据获取的过程如下所示:

        import base64            
        import sys
        import random

        PY3 = sys.version_info[0] >= 3

        def base64ify(bytes_or_str):
            if PY3 and isinstance(bytes_or_str, str):
                input_bytes = bytes_or_str.encode('utf8')
            else:
                input_bytes = bytes_or_str

            output_bytes = base64.urlsafe_b64encode(input_bytes)
            if PY3:
                return output_bytes.decode('ascii')
            else:
                return output_bytes

        class ProxyMiddleware(object):                
            def process_request(self, request, spider):
                # 代理服务器(产品官网 www.16yun.cn)
                proxyHost = "t.16yun.cn"
                proxyPort = "31111"

                # 代理验证信息
                proxyUser = "YUTRGKJ"
                proxyPass = "547895"

                # [版本>=2.6.2](https://docs.scrapy.org/en/latest/news.html?highlight=2.6.2#scrapy-2-6-2-2022-07-25)无需添加验证头,会自动在请求头中设置Proxy-Authorization     
                request.meta['proxy'] = "http://{0}:{1}@{2}:{3}".format(proxyUser,proxyPass,proxyHost,proxyPort)

                # 版本<2.6.2 需要手动添加代理验证头
                # request.meta['proxy'] = "http://{0}:{1}".format(proxyHost,proxyPort)
                # request.headers['Proxy-Authorization'] = 'Basic ' +  base64ify(proxyUser + ":" + proxyPass)                    

                # 设置IP切换头(根据需求)
                # tunnel = random.randint(1,10000)
                # request.headers['Proxy-Tunnel'] = str(tunnel)

                # 每次访问后关闭TCP链接,强制每次访问切换IP
                request.header['Connection'] = "Close"
相关文章
|
16天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
16天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
103 45
|
10天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
46 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
17天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
40 4
|
17天前
|
安全 数据库 开发者
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第26天】本文详细介绍了如何在Django框架下进行全栈开发,包括环境安装与配置、创建项目和应用、定义模型类、运行数据库迁移、创建视图和URL映射、编写模板以及启动开发服务器等步骤,并通过示例代码展示了具体实现过程。
29 2
|
17天前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
39 1
|
20天前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
Python Web框架比较:Django vs Flask vs Pyramid
28 1
|
28天前
|
JSON 搜索推荐 API
Python的web框架有哪些?小项目比较推荐哪个?
【10月更文挑战第15天】Python的web框架有哪些?小项目比较推荐哪个?
48 1
|
1月前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
Python Web框架比较:Django vs Flask vs Pyramid
24 4
|
8天前
|
安全 API 网络架构
Python中哪个框架最适合做API?
本文介绍了Python生态系统中几个流行的API框架,包括Flask、FastAPI、Django Rest Framework(DRF)、Falcon和Tornado。每个框架都有其独特的优势和适用场景。Flask轻量灵活,适合小型项目;FastAPI高性能且自动生成文档,适合需要高吞吐量的API;DRF功能强大,适合复杂应用;Falcon高性能低延迟,适合快速API开发;Tornado异步非阻塞,适合高并发场景。文章通过示例代码和优缺点分析,帮助开发者根据项目需求选择合适的框架。
27 0