在Dataphin数据治理系列:基于数据质量管理,支撑业务快速发展这篇文章中,我们详细的介绍了Dataphin数据质量模块的产品核心能力和产品使用演示。
在实际的质量管理中,做完了事前的质量规则的配置和事中的质量规则校验后,会产生大量的质量问题待治理项,这时候需要有一个完整的工作流程去管理质量问题,实现从质量规则配置,到质量问题发现,到质量治理修复问题,最终提升数据质量的完整PDCA流程。
一、场景介绍
场景1:某电商公司通过手机号进行会员广告投放,历史处理的手机号都是11位,突然有一天发现了一个新的待治理项,通过查看校验详情,发现是有一个新的采集渠道采集上来的手机号是带了国际电话区号(+86)的未处理数据,处理异常数据后,点击重新校验,校验通过即可完成该治理项。
场景2:某财务部门,发现月度财务账单核对后存在差异。通过质量校验发现,有上下游相关的5张表都出现了数据口径不一致的问题,这是可以将5张表放入一个 财务数据治理流程 中,通过流程统一跟踪和治理出现的质量的问题,治理后由财务部门进行最终的数据验收。
二、产品能力介绍
1、治理工作台
质量校验时发现的质量问题,会出现在治理工作台中,等待负责人处理。
通过治理工作台,可以通过以下治理操作:发起治理、忽略本次异常、添加白名单、重新校验、通知负责人进行具体的问题治理;或者查看问题的历史操作记录,了解历史问题和治理方案。
1.1、查看校验详情
点击校验详情,可以查看本次质量异常的校验详情信息,包括检验对象、校验时间、关键指标,用于初步判断问题原因,更详细的问题定位需要结合异常数据和数据任务等共同判断。
1.2、发起治理
针对需要按照完整的治理流程(先治理后验收)处理的问题,和多个同一个领域可以一起治理的问题,可以发起治理流程,在治理流程中对这些问题进行统一的处理。
1.3、忽略异常
针对偶尔出现的异常问题(如网络波动),如果已经修复,则可以直接忽略本次异常。
1.4、加入白名单
对于不是核心需要治理的对象,比如临时表,可以加入白名单,有效期内出现的后续质量问题不会再出现工作台中。
1.5、重新校验
针对偶尔出现的异常,但是目前已经恢复的数据;或者已经在上游治理过的数据,可以执行一次重新校验,对最新的数据进行一次校验,看是否符合质量规则校验条件。
1.6、通知责任人
对于需要负责人重点关注的问题,或者长期未处理的问题,可以直接通知该问题的负责人加急处理。
1.7、查看操作记录
操作记录中保留了治理问题从出现开始的所有操作记录,包括问题的出现、忽略、治理的操作和原因等,可以通过操作记录详细了解一个治理项的历史情况。
2、治理流程
在治理工作台中发起治理后,可以在治理流程列表中看到和自己相关的治理流程,可以在治理流程中对质量问题进行进一步处理
在治理流程中,可以对质量问题进行忽略、重新校验等治理操作,或者到研发模块,修改数据产出流程。完成治理后,治理人可以发起验收,提交整个治理流程到验收人处理。
验收人可以查看治理流程中每个问题的状态,可以根据问题的治理状态和发起治理时的说明,决定是否通过验收。
验收人验收通过之后,当前治理流程变为验收通过状态,本次治理流程正式结束。
治理流程的关键环节(发起治理、提交验收、验收通过等)会发送消息给相关人,协助相关人快速处理相关流程。
3、治理白名单
对于暂时不需要治理的治理项, 可以放入白名单进行统一管理,在白名单有效期内,质量校验仍会正常执行,但不会生成治理项。
在治理白名单页面,可以针对白名单进行统一管理,如修改白名单生效时间和删除白名单等。
三、结语
以上就是关于质量治理工作台的全部介绍。通过治理工作台,可以实现对质量问题处理流程的跟踪,从而更好管理质量问题出现后的整个治理流程。
到Dataphin的3.10版本,质量模块实现了从事前的质量规则配置(在质量模块配置、结合数据标准配置、在集成任务配置),到事中的数据质量稽核校验(定时校验、任务触发校验),到事后的质量整改的流程跟踪和效果检验的整条质量提升链路,帮助客户更快更好的构建高质量数据。
更多历史内容详见:
Dataphin数据治理系列:基于数据质量管理,支撑业务快速发展