MySQL二级索引的查询过程

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 聚簇索引就是innodb默认创建的基于主键的索引结构,而且表里的数据就是直接放在聚簇索引里,作为叶节点的数据页:

聚簇索引就是innodb默认创建的基于主键的索引结构,而且表里的数据就是直接放在聚簇索引里,作为叶节点的数据页:


12.png


基于主键的数据搜索:从聚簇索引的根节点开始进行二分查找,一路找到对应数据页,基于页目录就直接定位到主键目标数据。


若想对其它字段建立索引,甚至是基于多个字段建立联合索引,此时索引结构又是咋样?


假设对其他字段建立索引,如name、age之类,都是一样原理。比如你插入数据时:


把完整数据插入聚簇索引的叶节点的数据页,同时维护好聚簇索引

为你其他字段建立的索引,重新再建立一颗B+树

比如你基于name字段建立了一个索引,当插入数据时,就会重新搞一颗B+树,B+树的叶节点也是数据页,但该数据页里仅放主键字段和name字段:

11.png



这是独立于聚簇索引之外的另一个name字段的B+索引树,其叶节点的数据页仅存放主键和name字段值。


整体排序规则都跟聚簇索引按照主键的排序规则是一样,即:


叶节点的数据页中的name值都是排序的

下一个数据页里的name字段值都>上一个数据页里的name字段值

name字段的索引B+树也会构建多层级的索引页,索引页里存放:


下一层的页号

最小name字段值,根据name字段值排序。

所以若你根据name字段查数据,过程也一样,从name索引树的根节点开始,一层一层往下找,一直找到叶节点的数据页,定位到name字段值对应的主键值。


然后针对


select * from t where name='xx'


这种语句,先根据name值在name索引树里找,找到叶节点,也仅能找到对应主键值,而找不到这行数据的所有字段。


所以还需回表:还需根据主键值,再到聚簇索引里从根节点开始,找到叶节点的数据页,定位到主键值对应的完整数据行,此时才能把select *要的全部字段值都取出。


联合索引


比如name+age,运行流程同理,建立一个独立的B+树,叶节点的数据页存放id+name+age后,默认按name排序,name一样就按age排,不同数据页之间的name+age值的排序也如此。


然后这个name+age的联合索引的B+树的索引页存放:


下一层节点的页号

最小的name+age的值

所以当你根据name+age搜索时,就会走name+age联合索引树,搜索到主键,再根据主键到聚簇索引里去搜索。


总结


以上就是InnoDB索引的实现原理,就是建立B+树,层层二分查找。不同的索引就是建立了不同B+树,然后增删改时:


在数据页里更新数据

维护你所有的索引


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2月前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
199 66
|
18天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
118 9
|
1天前
|
SQL 存储 关系型数据库
MySQL秘籍之索引与查询优化实战指南
最左前缀原则。不冗余原则。最大选择性原则。所谓前缀索引,说白了就是对文本的前几个字符建立索引(具体是几个字符在建立索引时去指定),比如以产品名称的前 10 位来建索引,这样建立起来的索引更小,查询效率更快!
41 22
 MySQL秘籍之索引与查询优化实战指南
|
3天前
|
存储 关系型数据库 MySQL
MySQL中为什么要使用索引合并(Index Merge)?
通过这些内容的详细介绍和实际案例分析,希望能帮助您深入理解索引合并及其在MySQL中的
21 10
|
23天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
61 18
|
16天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
48 8
|
18天前
|
SQL 关系型数据库 MySQL
MySQL 窗口函数详解:分析性查询的强大工具
MySQL 窗口函数从 8.0 版本开始支持,提供了一种灵活的方式处理 SQL 查询中的数据。无需分组即可对行集进行分析,常用于计算排名、累计和、移动平均值等。基本语法包括 `function_name([arguments]) OVER ([PARTITION BY columns] [ORDER BY columns] [frame_clause])`,常见函数有 `ROW_NUMBER()`, `RANK()`, `DENSE_RANK()`, `SUM()`, `AVG()` 等。窗口框架定义了计算聚合值时应包含的行。适用于复杂数据操作和分析报告。
59 11
|
22天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
22 7
|
21天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
53 5
|
22天前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
84 6