机器学习都能做些什么呢

简介: 回归问题通常用来预测一个值,其标签的值是连续的。例如,预测房价、未来的天气等任何连续性的走势、数值。比较常见的回归算法是线性回归(linear regression)算法以及深度学习中的神经网络等。分类问题是将事物标记一个类别标签,结果为离散值,也就是类别中的一个选项,例如,判断一幅图片上的动物是一只猫还是一只狗。分类有二元分类和多元分类,每类的最终正确结果只有一个。分类是机器学习的经典应用领域,很多种机器学习算法都可以用于分类,包括最基础的逻辑回归算法、经典的决策树算法,以及深度学习中的神经网络等。还有从多元分类上衍生出来的多标签分类问题,典型应用如社交网站中上传照片时的自动标注人名功能,

机器学习的两大应用场景—回归与分类

回归(regression)和分类(classification)是两种最常见的机器学习问题类型,如下图所示。

回归问题通常用来预测一个值,其标签的值是连续的。例如,预测房价、未来的天气等任何连续性的走势、数值。比较常见的回归算法是线性回归(linear regression)算法以及深度学习中的神经网络等。

分类问题是将事物标记一个类别标签,结果为离散值,也就是类别中的一个选项,例如,判断一幅图片上的动物是一只猫还是一只狗。分类有二元分类和多元分类,每类的最终正确结果只有一个。分类是机器学习的经典应用领域,很多种机器学习算法都可以用于分类,包括最基础的逻辑回归算法、经典的决策树算法,以及深度学习中的神经网络等。还有从多元分类上衍生出来的多标签分类问题,典型应用如社交网站中上传照片时的自动标注人名功能,以及推荐系统——在网站或者App中为同一个用户推荐多种产品,或把某一种产品推荐给多个用户。

机器学习的其他应用场景

当然,除回归问题和分类问题之外,机器学习的应用场景还有很多。比如,无监督学习中最常见的聚类 (clustering)问题是在没有标签的情况下,把数据按照其特征的性质分成不同的簇(其实也就是数据分类);还有一种无监督学习是关联规则,通过它可以找到特征之间的影响关系。

又比如时间序列,指在内部结构随时间呈规律性变化的数据集,如趋势性数据、随季节变化的数据等。时间序列问题其实也就是和时间、周期紧密关联的回归问题。具体应用场景包括预测金融市场的波动,推断太阳活动、潮汐、天气乃至恒星的诞生、星系的形成,预测流行疾病传播过程等。

还有结构化输出。通常机器学习都是输出一个答案或者选项,而有时需要通过学习输出一个结构。什么意思呢?比如,在语音识别中,机器输出的是一个句子,句子是有标准结构的,不只是数字0~9这么简单(识别0~9是分类问题),这比普通的分类问题更进一步。具体应用场景包括语音识别——输出语法结构正确的句子、机器翻译——输出合乎规范的文章。

还有一部分机器学习问题的目标不是解决问题,而是令世界变得更加丰富多彩,因此AI也可以进行艺术家所做的工作,例如以下几种。Google的Dreamwork可以结合两种图片的风格进行艺术化的风格迁移。 生成式对抗网络GAN能造出以假乱真的图片。挖掘数字特征向量的潜隐空间,进行音乐、新闻、故事等创作。

我们可以把这种机器学习应用称为生成式学习。

还有些时候,机器学习的目标是做出决定,这时叫它们决策性问题。决策性问题本质上仍然是分类问题,因为每一个决策实际上还是在用最适合的行为对环境的某一个状态进行分类。比如,自动驾驶中的方向(左、中、右),以及围棋中的落点,仍然是19×19个类的其中之一。具体应用场景包括自动驾驶、智能体玩游戏、机器人下棋等。在很多决策性问题中,机器必须学习哪些决策是有效的、可以带来回报的,哪些是无效的、会带来负回报的,以及哪些是对长远目标有利的。因此,强化学习是这种情况下的常用技术。

总体来说,机器学习的诀窍在于要了解自己的问题,并针对自己的问题选择最佳的机器学习方法(算法),也就是找到哪一种技术最有可能适合这种情况。如果能把场景或任务和适宜的技术连接起来,就可以在遇到问题时心中有数,迅速定位一个解决方向。下图将一些常见的机器学习应用场景和机器学习模型进行了连接

目录
相关文章
|
4月前
|
机器学习/深度学习 自然语言处理
机器学习查漏补缺
机器学习查漏补缺
|
机器学习/深度学习 算法 JavaScript
AIGC背后的技术分析 | 机器学习?机器如何学习?
通过Julia的语法、函数、编译器使机器学习技术变得更加简单。
210 1
AIGC背后的技术分析 |  机器学习?机器如何学习?
|
机器学习/深度学习 人工智能 文字识别
开发者玩转机器学习不能错过的15篇深度文章!
机器学习平台PAI是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务。开发者可以通过PAI快速构建训练模型,如搭建一些《物体识别》、《验证语音降噪等》有趣的实验模型,也可以契合企业需求,实现企业个性化推荐,小编整理了一些基于PAI平台的模型开发训练指南,供开发者参考收藏。
|
机器学习/深度学习
机器学习几点总结
机器学习几点总结
|
机器学习/深度学习 自然语言处理 算法
做了 5 年机器学习研究,我发现了这 7 个真相
在Mindsdb从事 3 年自动机器学习工作后,我辞职了,至少我不会在短时间内从事任何与机器学习相关的职业工作。掐指一算,我已经做了 5 年机器学习研究,但直到今天,我才终于搞清楚了很多自己之前不知道的事物,甚至我还可能觉察到一些别人不知道的东西。
180 0
|
机器学习/深度学习 分布式计算 监控
机器学习实战指南:如何入手第一个机器学习项目?
机器学习实战指南:如何入手第一个机器学习项目?
571 0
机器学习实战指南:如何入手第一个机器学习项目?
|
机器学习/深度学习 数据采集 人工智能
告别 AI 模型黑盒:可解释机器学习研究报告
随着金融数据规模的日益增长与 AI 技术的发展,机器学习模型在金融银行业被广泛使用。高性能的机器学习模型虽然在预测能力上表现突出,但是因为模型过于复杂的结构而引发的黑盒问题,却不利于机器学习模型的大规模使用。无法解释的黑盒模型在使用过程中暴露出来的安全风险和不公正问题,使人们对黑盒模型的使用变得越来越谨慎。为了应对黑盒模型的不可解释的问题,科学家们提出了可解释机器学习的研究。可解释机器学习分为内在可解释模型的研究和模型的事后解析方法两大方向。
3861 1
告别 AI 模型黑盒:可解释机器学习研究报告
|
机器学习/深度学习 Kubernetes 测试技术
“机器学习还是很难用!”
机器学习仍然很难用,但情况开始有所改善了。
|
机器学习/深度学习 算法 数据挖掘
白话机器学习
机器学习是什么 一段程序可以看作一连串从输入到输出的过程,无论是工程师还是程序员,我们都想通过设计来完成某种功能。以做一个网页为例,要画视觉图、UI 图,以及前端后端交互图等,我们要给计算机设计一套解决具体问题的流程。
1627 0