假期充电,用阿里云 Serverless K8s + AIGC 搭建私人代码助理

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
应用实时监控服务-用户体验监控,每月100OCU免费额度
函数计算FC,每月15万CU 3个月
简介: 假期充电,用阿里云 Serverless K8s + AIGC 搭建私人代码助理

作者:子白、冬岛


AI 技术正在引领科技创新浪潮,随着 ChatGPT 和 Midjourney 的走红,AIGC 技术正在世界范围内掀起一股 AI 技术浪潮。开源领域也涌现了许多类似模型,如 FastGPT、Moss、Stable Diffusion 等。这些模型展现出的惊人效果吸引企业和开发者们投身其中,但是复杂繁琐的部署方式成为了拦路虎。阿里云 ASK 提供 Serverless 化的容器服务,用户无需关心资源及环境配置,可以帮助开发者们零门槛快速部署 AI 模型。本文以开源的 FastChat 为例,详细展示如何在 ASK 中快速搭建一个私人代码助理。目前,ASK 已加入阿里云免费试用计划,为开发者、企业提供一定额度的试用资源。如对 ASK 感兴趣,欢迎大家通过点击文末的“此处” 访问并领取。



效果预览


Cursor + GPT-4 的代码生成是不是觉得很智能,我们通过 FastChat + VSCode 插件也能做到一样的效果!


  • 快速生成一个 Golang  Hello World

地址:https://yuque.antfin.com/images/lark/0/2023/gif/11431/1682574183392-11e16131-3dae-4969-a0d1-79a0a9eefb01.gif


  • 快速生成一个 Kubernetes  Deployment

地址:https://yuque.antfin.com/images/lark/0/2023/gif/11431/1682574192825-7a1d3c76-025d-45db-bea1-4ca5dd885520.gif


背景介绍


ASK(Alibaba Serverless Kubernetes)是阿里云容器服务团队提供的一款面向 Serverless 场景的容器产品。用户可以使用 Kubernetes API 直接创建 Workload,免去节点运维烦恼。ASK 作为容器 Serverless 平台,具有免运维、弹性扩容、兼容 K8s 社区、强隔离四大特性。



大规模 AI 应用训练和部署主要面临以下挑战。


  • GPU 资源受限且训练成本较高

大规模 AI 应用在训练及推理时都需要使用 GPU,但是很多开发者缺少 GPU 资源。单独购买 GPU 卡,或者购买 ECS 实例都需要较高成本。

  • 资源异构

并行训练时需要大量的 GPU 资源,这些 GPU 往往是不同系列的。不同 GPU 支持的 CUDA 版本不同,且跟内核版本、nvidia-container-cli 版本相互绑定,开发者需要关注底层资源,为 AI 应用开发增加了许多难度。

  • 镜像加载慢

AI 类应用镜像经常有几十 GB,下载往往需要几十分钟甚至数小时。


针对上述问题,ASK 提供了完美的解决方案。在ASK 中可以通过 Kubernetes Workload 十分方便的使用 GPU 资源,无需其前置准备使用,用完即可立即释放,使用成本低。ASK 屏蔽了底层资源,用户无需关心 GPU、CUDA 版本等等的依赖问题,只需关心 AI 应用的自身逻辑即可。同时,ASK 默认就提供了镜像缓存能力,当 Pod 第 2 次创建时可以秒级启动。


部署流程


1. 前提条件


  • 已创建 ASK 集群。具体操作,请参见创建 ASK 集群[1]
  • 下载 llama-7b 模型并上传到 OSS 。具体操作,请参见本文附录部分。


2. 使用 Kubectl 创建


替换 yaml 文件中变量

${your-ak} 您的 AK

${your-sk} 您的 SK

${oss-endpoint-url} OSS 的 enpoint

${llama-oss-path} 替换为存放 llama-7b 模型的地址(路径末尾不需要/),如 oss://xxxx/llama-7b-hf


apiVersion: v1
kind: Secret
metadata:
  name: oss-secret
type: Opaque
stringData:
  .ossutilconfig: |
    [Credentials]
    language=ch
    accessKeyID=${your-ak}
    accessKeySecret=${your-sk}
    endpoint=${oss-endpoint-url}
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: fastchat
  name: fastchat
  namespace: default
spec:
  replicas: 1
  selector:
    matchLabels:
      app: fastchat
  strategy:
    rollingUpdate:
      maxSurge: 100%
      maxUnavailable: 100%
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: fastchat
        alibabacloud.com/eci: "true" 
      annotations:
        k8s.aliyun.com/eci-use-specs: ecs.gn6e-c12g1.3xlarge
    spec:
      volumes:
      - name: data
        emptyDir: {}
      - name: oss-volume
        secret:
          secretName: oss-secret
      dnsPolicy: Default
      initContainers:
      - name: llama-7b
        image: yunqi-registry.cn-shanghai.cr.aliyuncs.com/lab/ossutil:v1
        volumeMounts:
          - name: data
            mountPath: /data
          - name: oss-volume
            mountPath: /root/
            readOnly: true
        command: 
        - sh
        - -c
        - ossutil cp -r ${llama-oss-path} /data/
        resources:
          limits:
            ephemeral-storage: 50Gi
      containers:
      - command:
        - sh
        - -c 
        - "/root/webui.sh"
        image: yunqi-registry.cn-shanghai.cr.aliyuncs.com/lab/fastchat:v1.0.0
        imagePullPolicy: IfNotPresent
        name: fastchat
        ports:
        - containerPort: 7860
          protocol: TCP
        - containerPort: 8000
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          initialDelaySeconds: 5
          periodSeconds: 10
          successThreshold: 1
          tcpSocket:
            port: 7860
          timeoutSeconds: 1
        resources:
          requests:
            cpu: "4"
            memory: 8Gi
          limits:
            nvidia.com/gpu: 1
            ephemeral-storage: 100Gi
        volumeMounts:
        - mountPath: /data
          name: data
---
apiVersion: v1
kind: Service
metadata:
  annotations:
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-address-type: internet
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-instance-charge-type: PayByCLCU
  name: fastchat
  namespace: default
spec:
  externalTrafficPolicy: Local
  ports:
  - port: 7860
    protocol: TCP
    targetPort: 7860
    name: web
  - port: 8000
    protocol: TCP
    targetPort: 8000
    name: api
  selector:
    app: fastchat
  type: LoadBalancer


3. 等待 FastChat Ready


等待 pod ready 后,在浏览器中访问 http://${externa-ip}:7860

📍启动后需要下载 vicuna-7b 模型,模型大小约 13GB

下载模型时间大概耗时约 20 分钟左右,如果提前做好磁盘快照,通过磁盘快照创建磁盘并挂载到 pod,就是秒级生效


kubectl get po |grep fastchat
# NAME                        READY   STATUS    RESTARTS   AGE
# fastchat-69ff78cf46-tpbvp   1/1     Running   0          20m
kubectl get svc fastchat
# NAME       TYPE           CLUSTER-IP        EXTERNAL-IP    PORT(S)          AGE
# fastchat   LoadBalancer   192.168.230.108   xxx.xx.x.xxx   7860:31444/TCP   22m


效果展示


Case 1:通过控制台使用 FastChat


在浏览器中访问 http://${externa-ip}:7860,可以直接测试聊天功能。比如使用自然语言让 FastChat 写一段代码。


输入:基于 Nginx 镜像编写 Kubernetes Deployment Yaml 文件


FastChat 输出如下图所示。



Case 2:通过 API 使用 FastChat


FastChat API 监听在 8000 端口,如下所示,通过 curl 发起一个 API 调用,然后返回结果。


  • curl 命令


curl http://xxx:xxx:xxx:8000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "vicuna-7b-v1.1",
    "messages": [{"role": "user", "content": "golang 生成一个 hello world"}]
  }'


  • 输出结果


{"id":"3xqtJcXSLnBomSWocuLW2b","object":"chat.completion","created":1682574393,"choices":[{"index":0,"message":{"role":"assistant","content":"下面是使用 Go 语言生成 \"Hello, World!\" 的代码:\n```go\npackage main\n\nimport \"fmt\"\n\nfunc main() {\n    fmt.Println(\"Hello, World!\")\n}\n```\n运行该代码后,会输出 \"Hello, World!\"。"},"finish_reason":"stop"}],"usage":null}


Case 3: VSCode 插件


既然有了 API 接口,在 IDE 中怎么快速集成这个能力呢。你是不是想到了 Copilot、Cursor、Tabnine ,那咱们就通过 VSCode 插件集成一下 FastChat 看看吧。VSCode 插件几个核心文件:src/extension.ts、package.json 和 tsconfig.json


这三个文件的内容分别如下:


  • src/extension.ts


import * as vscode from 'vscode';
import axios from 'axios';
import { ExtensionContext, commands, window } from "vscode";
const editor = window.activeTextEditor
export function activate(context: vscode.ExtensionContext) {
    let fastchat = async () => {
        vscode.window.showInputBox({ prompt: '请输入代码提示语' }).then((inputValue) => {
            if (!inputValue) {
                return;
            }
            vscode.window.withProgress({
                location: vscode.ProgressLocation.Notification,
                title: '正在请求...',
                cancellable: false
            }, (progress, token) => {
                return axios.post('http://example.com:8000/v1/chat/completions', {
                    model: 'vicuna-7b-v1.1',
                    messages: [{ role: 'user', content: inputValue }]
                }, {
                    headers: {
                        'Content-Type': 'application/json'
                    }
                }).then((response) => {
                    // const content = JSON.stringify(response.data);
                    const content = response.data.choices[0].message.content;
                    console.log(response.data)
                    const regex = /```.*\n([\s\S]*?)```/
                    const matches = content.match(regex)
                    if (matches && matches.length > 1) {
                        editor?.edit(editBuilder => {
                            let position = editor.selection.active;
                            position && editBuilder.insert(position, matches[1].trim())
                        })
                    }
                }).catch((error) => {
                    console.log(error);
                });
            });
        });
    }
    let command = commands.registerCommand(
        "fastchat",
        fastchat
    )
    context.subscriptions.push(command)
}


  • package.json


{
    "name": "fastchat",
    "version": "1.0.0",
    "publisher": "yourname",
    "engines": {
        "vscode": "^1.0.0"
    },
    "categories": [
        "Other"
    ],
    "activationEvents": [
        "onCommand:fastchat"
    ],
    "main": "./dist/extension.js",
    "contributes": {
        "commands": [
            {
                "command": "fastchat",
                "title": "fastchat code generator"
            }
        ]
    },
    "devDependencies": {
        "@types/node": "^18.16.1",
        "@types/vscode": "^1.77.0",
        "axios": "^1.3.6",
        "typescript": "^5.0.4"
    }
}


  • tsconfig.json


{
    "compilerOptions": {
      "target": "ES2018",
      "module": "commonjs",
      "outDir": "./dist",
      "strict": true,
      "esModuleInterop": true,
      "resolveJsonModule": true,
      "declaration": true
    },
    "include": ["src/**/*"],
    "exclude": ["node_modules", "**/*.test.ts"]
  }


好,插件开发完咱们就看一下效果。


  • 快速生成一个 Golang  Hello World

地址:https://yuque.antfin.com/images/lark/0/2023/gif/11431/1682574183392-11e16131-3dae-4969-a0d1-79a0a9eefb01.gif


  • 快速生成一个 Kubernetes  Deployment

地址:https://yuque.antfin.com/images/lark/0/2023/gif/11431/1682574192825-7a1d3c76-025d-45db-bea1-4ca5dd885520.gif


总结


ASK 作为容器 Serverless 平台,具有免运维、弹性扩缩容、屏蔽异构资源、镜像加速等能力,非常适合 AI 大模型部署场景,欢迎试用。

附录:

1. 下载 llama-7b 模型

模型地址:

https://huggingface.co/decapoda-research/llama-7b-hf/tree/main


# 如果使用的是阿里云 ECS,需要运行如下命令安装 git-lfs
# yum install git-lfs
git clone https://huggingface.co/decapoda-research/llama-7b-hf
git lfs install
git lfs pull


2. 上传到 OSS

可参考文档:

https://help.aliyun.com/document_detail/195960.html

参考文档:

[1] 创建 ASK 集群

https://help.aliyun.com/document_detail/86377.htm?spm=a2c4g.186945.0.0.61eb3e0694K2ej#task-e3c-311-ydb

[2] ASK 概述

https://help.aliyun.com/document_detail/86366.html?spm=a2c4g.750001.0.i1


点击此处,领取 ASK 免费试用限额资源

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
27天前
|
算法 Serverless
通过函数计算部署ComfyUI以实现一个AIGC图像生成系统
快来报名参与ComfyUI活动,体验一键部署模型,生成粘土风格作品赢取体脂秤。活动时间从即日起至2024年12月13日24:00:00,每个工作日限量50个,先到先得!访问活动页面了解更多详情。
146 54
|
17天前
|
人工智能 城市大脑 数据可视化
阿里云“山海计划”:基于UE引擎的“中国特色”城市场景AIGC方案
阿里云数据可视化产品DataV的三维交互团队近期研发了基于虚幻引擎与AIGC的中国城市三维场景的一站式生成服务,本文以建筑生成为切入点,从方法论出发逐步为大家展开一个宏大的、高度智能化的真实世界打造之旅。
125 23
|
27天前
|
弹性计算 算法 搜索推荐
活动实践 | 通过函数计算部署ComfyUI以实现一个AIGC图像生成系统
ComfyUI是基于节点工作流稳定扩散算法的新一代WebUI,支持高质量图像生成。用户可通过阿里云函数计算快速部署ComfyUI应用模板,实现个性化定制与高效服务。首次生成图像因冷启动需稍长时间,之后将显著加速。此外,ComfyUI允许自定义模型和插件,满足多样化创作需求。
|
1月前
|
SQL 数据可视化 关系型数据库
阿里云DataV“山海计划” x Epic Fab:“中国风AIGC”助力智慧城市建设
DataV“山海计划”根据中国城市规划特色,建立城市地块、建筑、道路等“城市要素知识库”,基于AI大模型技术生成更贴近“中国特色”的城市场景。基于DataV“山海计划”的UE引擎插件已经登陆Epic Fab,广大UE引擎开发者可以通过该插件免费体验城市历史悠久的广州场景三维资产。除了三维城市场景生成,DataV为智慧城市提供完整的数据看板解决方案,提供200+基础图表、支持API、MySQL、SQL Server、人大金仓、达梦等30+数据源,通过DataV与UE引擎,广大开发者可以低成本获得“智慧城市”开发方案,将更多精力放在满足用户业务需求上,从而提升智慧城市项目的交付质量。
143 2
|
5月前
|
人工智能 运维 Cloud Native
实战基于阿里云的AIGC在运维领域的探索
传统运维模式已难以应对日益复杂的海量数据和业务需求,效率低下,故障难解。而人工智能的崛起,特别是AIGC技术的出现,为运维领域带来了新的机遇。AIGC能够自动生成运维脚本、分析海量数据,预测潜在故障,甚至提供解决方案,为运维工作注入智能化力量,推动运维向更高效、更智能的方向发展。
16631 19
实战基于阿里云的AIGC在运维领域的探索
|
3月前
|
JSON Serverless 数据格式
函数计算生成冰冻风格的AIGC图像
【9月更文挑战第05天】
58 3
|
4月前
|
机器学习/深度学习 人工智能 运维
"颠覆传统运维!揭秘阿里云AIGC如何化身运维界超级大脑,让故障预警、智能告警不再是梦,运维大神之路从此开启!"
【8月更文挑战第14天】随着AI技术的发展,AIGC正革新依赖人工经验的传统运维行业。阿里云凭借其领先的云计算能力和AI服务生态,为运维智能化提供了坚实基础。通过分析历史数据和系统日志,AIGC能自动发现并预测故障,大幅提升运维效率。例如,结合阿里云SLS和PAI,可构建智能告警系统,实现异常检测和实时预警。随着AIGC技术的进步,运维领域将迎来全面智能化转型,开启运维新时代。
138 3
|
4月前
|
机器学习/深度学习 算法 搜索推荐
"震撼揭秘!阿里云AIGC智能图像识别:黑科技如何颠覆你的视界,让图像识别秒变超能力,生活工作全面革新!"
【8月更文挑战第12天】在数字化浪潮中,图像数据激增,高效准确处理成为关键。阿里云智能图像识别服务(AIGC)应运而生,依托深度学习与计算机视觉技术,实现图像特征精确提取与理解。通过大规模数据训练及优化算法,AIGC在图像分类、目标检测等方面表现出色。其应用场景广泛,从电商的商品识别到内容安全审核,再到智能交通和医疗影像分析,均展现出巨大潜力。示例代码展示了AIGC图像生成的基本流程,彰显其技术实力与未来前景。
116 1
|
5月前
|
存储 Serverless Linux
函数计算产品使用问题之如何设置两个SD AIGC应用搭载同一个NAS
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
人工智能 运维 Serverless
报名参课丨解锁 Serverless+AI 新模式,拥有专属 AIGC 环境
Serverless 和 AI 大模型都是当前云上最火的技术方向,本次活动期望通过 Severless+AI 技术的强强联合,期待为客户提供基于 Serverless 技术实现 AI 推理部署平台的技术思路,一键解锁 AI 潜力,无需繁琐运维,降低 GPU 的使用成本、减少企业或个人创业的试错成本,让人人都可以拥有自己“专属”的 AIGC 环境成为可能。

相关产品

  • 容器服务Kubernetes版
  • 函数计算
  • 下一篇
    DataWorks