GPT-4 开启 “软件工程3.0” 全新时代(1)

简介: GPT-4 开启 “软件工程3.0” 全新时代

GPT-4 开启 “软件工程3.0” 全新时代

技术琐话 2023-03-25 08:33 发表于陕西

以下文章来源于软件质量报道,作者朱少民

希望这篇文章 成为 “软件工程3.0” 开创性的宣言为了定义 “软件工程3.0”,让我们先定义 “软件工程1.0”、 “软件工程2.0” 。先简单说明一下,用软件版本号的方式 “1.0、2.0、3.0” 来分别定义第一代、第二代、第三代 软件工程,符合软件工程的习惯,而且简洁明了。1. 软件工程 1.0

“软件工程1.0” 即第一代软件工程,自然是受建筑工程、水利工程等影响的传统软件工程,它的诞生可以追溯到1968年。在上个世纪五、六十年代软件出现危机,大家还记得布鲁克斯(Frederick P. Brooks)在《人月神话》一书中所描述的场景:软件开发被喻为让众多史前巨兽痛苦挣扎,却无力摆脱的焦油坑。软件危机迫使人们去寻找产生危机的内在原因,进而找出消除危机的解决方案。面对”软件危机”,人们调查研究了软件开发的实际情况,逐步认识到采用工程化的方法从事软件系统的研发和维护的必要性。为了克服这一危机,大家走到一起,共同探讨以获得问题的解决途径,于是在1968年NATO的计算机科学家在联邦德国召开国际会议,讨论软件危机问题,正式提出了“软件工程”(software engineering)这一术语,从此一门新的工程学科诞生了,软件工程才得以不断发展,逐渐成熟起来。传统软件工程主要向土木工程、工业工程学习,吸收其百年实践积累下来的实践方法和经验、沉淀下来的思想。软件工程1.0体现了下列一些特征:

  • 产品化:交付符合质量标准的组件、构件和系统
  • 过程决定结果:流程质量决定产品质量,一环扣一环,相信良好的过程产生良好的产品,关注过程胜过关注人,也非常关注过程评估和过程改进,如CMM(过程成熟度模型)是其典型代表。
  • 阶段性明确,需求评审通过了,才能开始设计;设计评审通过了,才能开始实施(编程),编程结束了再进行测试等,如瀑布模型是其典型代表
  • 责任明确:角色定义清楚,分工细致;
  • 文档化:强调规范的文档,大量的文档模板;
  • 计划性强:完整的计划,严格控制变更;
  • 建筑工程的框架结构设计,在软件工程上表现为以架构设计为中心。
  • 现代制造业流水线的启发——软件工厂思想。
  • 注重项目管理:围绕项目开展管理工作,包括风险预防、里程碑控制和关键路径法等。
  • 以顾客为中心的全面质量管理。
  • 预防为主,检验为辅,即缺陷预防思想。


2. 软件工程 2.0

在2008年,我写的《软件工程导论》中,相对传统软件工程,我定义了现代软件工程,那时,我没能预见到今天人工智能的巨大力量。15年后,我将受互联网、开源软件运动、敏捷/DevOps开发模式所影响并最终形成的、建立在SaaS(软件即服务)、Cloud之上的软件工程定义为 “软件工程2.0”。没有互联网(Internet),就没有Cloud、没有SaaS,我们对软件就不能部署在软件研发公司自己的数据中心,持续交付(CD)就没有意义,因为无法做到将包装盒形式的软件产品持续交付到客户手中,敏捷、DevOps也就难以实施,虽然可以在内部实现持续集成(CI),其价值会降低不少。开源软件运动让我们认识到 “软件过程”、“软件管理”不是非常重要,至少不是第一要素,第一要素还是人,其次是软件架构(微服务、serverless等)和代码质量,使软件容易演化(如架构可扩展性、代码的可维护性)。而且客户或用户始终希望我们能够按时交付高质量的产品,又认可软件的灵活性,希望软件能够具有随需应变的能力,及时进行必要的修改来满足业务的新需求。同时,软件又是一种知识型产品,需要创造性,并依赖每个研发人员的创造力和积极性。所有这些引导人们新的思考,引导人们不断认识软件工程,从而在2001年17位软件开发轻量型流派掌门人联合签署了敏捷宣言:

之后逐渐形成了敏捷/DevOps开发模式、精益软件开发模式等,即让软件工程进入2.0时代。软件工程2.0的特征可以简单概括为下列几点:

  • SaaS(软件即服务):软件更多是以一种服务存在;
  • 以人为本:个体与协作胜于流程和工具,充分发挥个人和团队的创造性和潜力;
  • 拥抱变化:敏捷开发或轻量级过程,加速迭代,以不变应万变。
  • 持续性阶段性不明确,持续构建、持续集成、持续测试、持续交付,以时间换空间,消除市场风险;
  • 融合:强调测试开发融合,开发与运维融合,推崇全栈工程师等。
  • 真正把用户放在第一位用户、产品经理尽可能参与团队研发过程中,注重用户体验,千人千面;
  • 强调价值交付:只做对用户有价值的事情,加速价值流的流动;
  • 知识管理,将软件工程纳入知识管理的范畴。
  • 史诗般故事、用户故事、站立会议,让软件研发工作更有趣、更健康。
  • ......


3. 软件工程 3.0

在技术突破和创新方法的推动下,软件工程的世界发展越来越快,而最近的突破就是GPT-4等人工智能(AI)语言大模型的出现。GPT-4出来了,大家都很震惊,尤其惊讶于从GPT-3到GPT-4的进化速度。GPT-4是一种基于RLHF(人类反馈强化学习) 、多模态的语言大模型,它比其前身GPT-3.5有了显著的改进,GPT-4具有强大的识图能力、文字输入限制提升至 2.5 万字、回答准确性显著提高。因此GPT-4能够执行一系列复杂的任务,如代码生成、错误检测、软件设计等。正如文章谷歌工程主管:程序员的职业生涯将在 3 年内被AIGC终结 中的观点: “ChatGPT和GitHub Copilot预示着编程终结的开始”、“这个领域将发生根本性的变化”、“当程序员开始被淘汰时,只有两个角色可以保留:产品经理和代码评审人员。”...... 这篇文章是在GPT-4发布前写的,而GPT-4要强大多,所以对软件研发的影响更为显著。考虑到它的发展速度,在不久的将来,甚至从今天开始,AI就开始逐渐接手一些软件研发的工作,我们通过将GPT-4+(指GPT-4及其未来升级的版本)融入到软件研发生命周期中,研发人员的使命发生变化,GPT-4+重新定义了开发人员构建、维护和改进软件应用程序的方式,之后的软件开发会依赖这种全新的语言交流方式(类似chatGPT那样),让这类工具理解研发人员交待的任务、自主完成软件开发,如理解需求、自动生成UI、自动生成产品代码、自动生成测试脚本等。此后,研发团队的主要任务不是写代码、执行测试,而是训练模型、参数调优、围绕业务主题提问或给提示(prompt)。因此,我们说GPT-4将开启 “软件工程3.0” 新时代,今年是软件工程3.0元年。先看看 GPT-4自己是如何说的,但经过我简单的实验,它能做的事比它自己说的要多。


相关文章
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
智能化软件测试:AI驱动的自动化测试策略与实践####
本文深入探讨了人工智能(AI)在软件测试领域的创新应用,通过分析AI技术如何优化测试流程、提升测试效率及质量,阐述了智能化软件测试的核心价值。文章首先概述了传统软件测试面临的挑战,随后详细介绍了AI驱动的自动化测试工具与框架,包括自然语言处理(NLP)、机器学习(ML)算法在缺陷预测、测试用例生成及自动化回归测试中的应用实例。最后,文章展望了智能化软件测试的未来发展趋势,强调了持续学习与适应能力对于保持测试策略有效性的重要性。 ####
|
7月前
|
存储 人工智能 自然语言处理
Lindorm作为AI搜索基础设施,助力Kimi智能助手升级搜索体验
月之暗面旗下的Kimi智能助手在PC网页、手机APP、小程序等全平台的月度活跃用户已超过3600万。Kimi发布一年多以来不断进化,在搜索场景推出的探索版引入了搜索意图增强、信源分析和链式思考等三大推理能力,可以帮助用户解决更复杂的搜索、调研问题。Lindorm作为一站式数据平台,覆盖数据处理全链路,集成了离线批处理、在线分析、AI推理、融合检索(正排、倒排、全文、向量......)等多项服务,支持Kimi快速构建AI搜索基础设施,显著提升检索效果,并有效应对业务快速发展带来的数据规模膨胀和成本增长。
|
存储 架构师 测试技术
架构之道——人人都是架构师
本文的探讨和编写主要围绕三个方面:架构是什么?架构师要解决的问题有哪些?解决这些问题的方法论是什么?最后作者希望人人都能具备架构师思维。
|
存储 SQL 关系型数据库
数据库开发设计规范(通用)
数据库开发设计规范(通用)
1813 0
|
6月前
|
人工智能 Cloud Native 安全
从云原生到 AI 原生,谈谈我经历的网关发展历程和趋势
从云原生到 AI 原生,谈谈我经历的网关发展历程和趋势
|
存储 SQL 数据挖掘
GCP大数据分析工具:BigQuery使用指南
【7月更文挑战第15天】BigQuery作为GCP中的一项重要大数据分析工具,以其高性能、可扩展性和易用性,在数据仓库、实时数据分析、日志分析等多个领域发挥着重要作用。通过本文的介绍,读者可以了解到BigQuery的基本功能、使用场景以及配置和使用方法,为后续的数据分析和业务决策提供支持。希望读者能够充分利用BigQuery的强大能力,挖掘数据背后的价值,为企业的发展贡献力量。
1639 3
|
搜索推荐 人机交互 项目管理
「UCD」用户体验设计
【7月更文挑战第3天】
353 5
|
前端开发
前端使用xlsx模板导出表格
【9月更文挑战第10天】在前端使用 `xlsx` 模板导出表格需完成以下步骤:首先引入 `xlsx` 库,准备数据与模板;接着读取模板文件,选择特定工作表并填充数据;最后将填充后的表格转换为二进制数据,创建 Blob 对象并触发下载。整个过程中可根据需求调整模板格式和数据填充方式。
415 5
|
12月前
|
人工智能 自然语言处理 API
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
我们小时候都玩过乐高积木。通过堆砌各种颜色和形状的积木,我们可以构建出城堡、飞机、甚至整个城市。现在,想象一下如果有一个数字世界的乐高,我们可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我们对话。这就是大型语言模型(LLM)能够做到的,比如 GPT-4,它就像是一套庞大的乐高积木套装,等待我们来发掘和搭建。
669 1
|
运维 监控 安全
云时代下的运维新思维:从反应到预防的转变
【8月更文挑战第22天】在数字化转型的浪潮中,云计算已成为企业IT架构的核心。本文将探讨如何转变传统运维思维,实现从被动应对故障到主动预防问题的转变,提升运维效率和系统稳定性。