时序预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络时间序列预测

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 时序预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

为提高股价估算或预测准确性和适应性,本文提出了一种基于贝叶斯网络卷积神经网络(Convolutional Neural Network, CNN)和门控循环单元(gated recurrent unit, GRU)的股价预测方法.首先,利用数据采集与监视控制系统获取股价数据进行预处理.其次,将预处理后的海量数据按时间滑动窗口构造为连续的特征矩阵作为输入,然后利用贝叶斯网络优化模型参数,最后利用CNN-GRU混合模型建立输入特征与股价的映射关系,生成基于BO-CNN-GRU中股价预测模型,进而实现其回归预测.验证了所提的模型具有较高的准确性和可行性,相关结论与讨论对配电网智能化技术研发有一定参考价值.

⛄ 部分代码

clc;clear;close all;  train_y_feature_label=y_feature_label1(index_label(1:train_num),:);

vaild_y_feature_label=y_feature_label1(index_label(train_num+1:vaild_num),:);

test_y_feature_label=y_feature_label1(index_label(vaild_num+1:end),:);

%%

train_y=train_y_feature_label;  train_y(find(train_y==0))=0.1;  %防止分母为0

train_MAE=sum(sum(abs(y_train_predict-train_y)))/size(train_y,1)/size(train_y,2) ; disp(['训练集平均绝对误差MAE:',num2str(train_MAE)])

train_MAPE=sum(sum(abs((y_train_predict-train_y)./train_y)))/size(train_y,1)/size(train_y,2); disp(['训练集平均相对误差MAPE:',num2str(train_MAPE)])

train_MSE=(sum(sum(((y_train_predict-train_y)).^2))/size(train_y,1)/size(train_y,2)); disp(['训练集均方根误差MSE:',num2str(train_MSE)])    

train_RMSE=sqrt(sum(sum(((y_train_predict-train_y)).^2))/size(train_y,1)/size(train_y,2)); disp(['训练集均方根误差RMSE:',num2str(train_RMSE)])

train_R2 = 1 - mean(norm(train_y - y_train_predict)^2 / norm(train_y - mean(train_y))^2);   disp(['训练集均方根误差R2:',num2str(train_R2)])


vaild_y=vaild_y_feature_label;vaild_y(find(vaild_y==0))=0.1;  %防止分母为0

vaild_MAE=sum(sum(abs(y_vaild_predict-vaild_y)))/size(vaild_y,1)/size(vaild_y,2) ; disp(['验证集平均绝对误差MAE:',num2str(vaild_MAE)])

vaild_MAPE=sum(sum(abs((y_vaild_predict-vaild_y)./vaild_y)))/size(vaild_y,1)/size(vaild_y,2); disp(['验证集平均相对误差MAPE:',num2str(vaild_MAPE)])

vaild_MSE=(sum(sum(((y_vaild_predict-vaild_y)).^2))/size(vaild_y,1)/size(vaild_y,2)); disp(['验证集均方根误差MSE:',num2str(vaild_MSE)])    

vaild_RMSE=sqrt(sum(sum(((y_vaild_predict-vaild_y)).^2))/size(vaild_y,1)/size(vaild_y,2)); disp(['验证集均方根误差RMSE:',num2str(vaild_RMSE)])

vaild_R2 = 1 - mean(norm(vaild_y - y_vaild_predict)^2 / norm(vaild_y - mean(vaild_y))^2);   disp(['验证集均方根误差R2:',num2str(vaild_R2)])


test_y=test_y_feature_label;test_y(find(test_y==0))=0.1;  %防止分母为0

test_MAE=sum(sum(abs(y_test_predict-test_y)))/size(test_y,1)/size(test_y,2) ; disp(['测试集平均绝对误差MAE:',num2str(test_MAE)])

test_MAPE=sum(sum(abs((y_test_predict-test_y)./test_y)))/size(test_y,1)/size(test_y,2); disp(['测试集平均相对误差MAPE:',num2str(test_MAPE)])

test_MSE=(sum(sum(((y_test_predict-test_y)).^2))/size(test_y,1)/size(test_y,2)); disp(['测试集均方根误差MSE:',num2str(test_MSE)])    

test_RMSE=sqrt(sum(sum(((y_test_predict-test_y)).^2))/size(test_y,1)/size(test_y,2)); disp(['测试集均方根误差RMSE:',num2str(test_RMSE)])

test_R2 = 1 - mean(norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2);   disp(['测试集均方根误差R2:',num2str(test_R2)])


%%

figure;

num=12;

if num>size(test_y,2)

   num=size(test_y,2);

end

plot(test_y(:,num))

hold on

plot(y_test_predict(:,num))

legend('True','predict')

⛄ 运行结果

⛄ 参考文献

[1] 罗  勇, 荣  娜, 詹献文. 基于CNN-GRU的配电网中压馈线合环电流预测研究[J]. 应用数学进展, 2022, 11(7):17.

[2] 史玉良, 陈智智, 张坤. 基于GRU优化用电信息采集终端故障预测模型的方法及系统:, CN110335168A[P]. 2019.

[3] 李鸿雁, 苏庭波. 基于贝叶斯网络和卷积神经网络的手绘草图识别方法[J]. 西南师范大学学报:自然科学版, 2019, 44(9):7.

[4] 曾蔚, 吴伊萍. 一种基于卷积神经网络和贝叶斯网络的用户行为预测算法[J]. 安阳师范学院学报, 2019(2):6.

[5] 周洁超. 基于贝叶斯网络的时间序列预测[D]. 大连海事大学, 2016.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
4天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
5天前
|
机器学习/深度学习 算法
基于蛙跳优化的神经网络数据预测matlab仿真
使用MATLAB2022a,应用蛙跳优化算法(SFLA)调整神经网络权重,提升预测精度,输出预测曲线。神经网络结合输入、隐藏和输出层进行预测,蛙跳算法模仿蛙群觅食行为优化权重和阈值。算法流程包括蛙群初始化、子群划分、局部搜索及适应度更新,直至满足停止条件。优化后的神经网络能提升预测性能。
|
5天前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
15 0
|
6天前
|
机器学习/深度学习 监控 算法
基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决
YOLOv2算法应用于昆虫检测,提供实时高效的方法识别和定位图像中的昆虫,提升检测精度。核心是统一检测网络,预测边界框和类别概率。通过预测框尺寸估算昆虫大小,适用于农业监控、生态研究等领域。在matlab2022A上运行,经过关键升级,如采用更优网络结构和损失函数,保证速度与精度。持续优化可增强对不同昆虫的检测能力。![image.png](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_e760ff6682a3420cb4e24d1e48b10a2e.png)
|
8天前
|
机器学习/深度学习 算法
基于GA遗传优化的CNN-GRU的时间序列回归预测matlab仿真
摘要: 使用MATLAB2022a,展示了一种基于遗传算法优化的CNN-GRU时间序列预测模型,融合遗传算法与深度学习,提升预测精度。遗传算法负责优化模型超参数,如学习率和神经元数量,以最小化均方误差。CNN负责特征提取,GRU处理序列数据中的长期依赖。流程包括初始化、评估、选择、交叉、变异和迭代,旨在找到最佳超参数组合。
|
9天前
|
传感器 算法 安全
基于WSN网络的定向步幻影路由算法matlab仿真
该文探讨了无线传感器网络中的位置隐私保护,对比了NDRW路由与定向步幻影路由在安全时间和能耗方面的性能。在MATLAB2022a中进行测试,结果显示NDRW路由提供最长的安全时间,尤其在长距离传输时,且在近距离下能耗低于幻影路由。幻影路由虽消耗更多能量,但通过随机步创造幻影源以增强安全性。NDRW路由利用非确定性随机游走策略,避免拥堵并提高效率,而幻影路由则引入方向性控制,通过启发式算法优化路径选择。
|
9天前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
13天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
4天前
|
机器学习/深度学习 算法 计算机视觉
卷积神经网络(CNN)的工作原理深度解析
【6月更文挑战第14天】本文深度解析卷积神经网络(CNN)的工作原理。CNN由输入层、卷积层、激活函数、池化层、全连接层和输出层构成。卷积层通过滤波器提取特征,激活函数增加非线性,池化层降低维度。全连接层整合特征,输出层根据任务产生预测。CNN通过特征提取、整合、反向传播和优化进行学习。尽管存在计算量大、参数多等问题,但随着技术发展,CNN在计算机视觉领域的潜力将持续增长。
|
5天前
|
机器学习/深度学习
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍

热门文章

最新文章