Python中的生成器

简介: Python中的生成器

生成器:用来保存产生序列的算法,同时会保存游标的位置
优点:节约内存
生成器的创建方式:
1.g=(i for i in rang(10))
与列表生成式类似,只需要讲[]变为()即可,会返回一个generator对象

生成器元素的获取
1.通过next函数:next(g)
2.通过for循环
3.通过object对象的内置方法__next__()
4.通过send函数:不过第一个参数必须为None

1 = (j for j in range(10))
print(g1)

def gen():
    for i in range(1, 100, 2):
        yield i
g = gen()
print(next(g))
print(next(g))
print(g.__next__())
print(g.send(None))
<generator object <genexpr> at 0x7fa64e501ac0>
1
3
5
7
相关文章
|
24天前
|
存储 索引 Python
|
25天前
|
Python
Python生成器、装饰器、异常
【10月更文挑战第15天】
|
1月前
|
传感器 大数据 数据处理
深入理解Python中的生成器:用法及应用场景
【10月更文挑战第7天】深入理解Python中的生成器:用法及应用场景
38 1
|
1月前
|
存储 数据处理 Python
深入解析Python中的生成器:效率与性能的双重提升
生成器不仅是Python中的一个高级特性,它们是构建高效、内存友好型应用程序的基石。本文将深入探讨生成器的内部机制,揭示它们如何通过惰性计算和迭代器协议提高数据处理的效率。
|
14天前
|
存储 程序员 数据处理
深入理解Python中的生成器与迭代器###
本文将探讨Python中生成器与迭代器的核心概念,通过对比分析二者的异同,结合具体代码示例,揭示它们在提高程序效率、优化内存使用方面的独特优势。生成器作为迭代器的一种特殊形式,其惰性求值的特性使其在处理大数据流时表现尤为出色。掌握生成器与迭代器的灵活运用,对于提升Python编程技能及解决复杂问题具有重要意义。 ###
|
1月前
|
存储 大数据 数据处理
Python 中的列表推导式与生成器:特性、用途与区别
Python 中的列表推导式与生成器:特性、用途与区别
23 2
|
1月前
|
存储 大数据 Python
Python 中的列表推导式和生成器
Python 中的列表推导式和生成器
17 1
|
2月前
|
机器学习/深度学习 设计模式 大数据
30天拿下Python之迭代器和生成器
30天拿下Python之迭代器和生成器
20 3
|
1月前
|
存储 大数据 数据处理
理解Python中的生成器:高效迭代的秘密
【10月更文挑战第8天】理解Python中的生成器:高效迭代的秘密
33 0
|
1月前
|
存储 大数据 程序员
深入理解Python中的生成器
【10月更文挑战第8天】深入理解Python中的生成器
13 0