ByteBuffer
基本使用
配置POM
<dependencies>
<dependency>
<groupId>io.netty</groupId>
<artifactId>netty-all</artifactId>
<version>4.1.39.Final</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.24</version>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.8.9</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.google.guava/guava 工具类合集-->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>19.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/ch.qos.logback/logback-classic 日志-->
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.3</version>
<scope>test</scope>
</dependency>
</dependencies>
配置logback.xml
<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false">
<!--定义日志文件的存储地址 勿在 LogBack 的配置中使用相对路径-->
<property name="LOG_HOME" value="D:/log" />
<!--控制台日志, 控制台输出 -->
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">
<!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度,%msg:日志消息,%n是换行符-->
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
</encoder>
</appender>
<!--文件日志, 按照每天生成日志文件 -->
<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!--日志文件输出的文件名-->
<FileNamePattern>${LOG_HOME}/TestWeb.log.%d{yyyy-MM-dd}.log</FileNamePattern>
<!--日志文件保留天数-->
<MaxHistory>30</MaxHistory>
</rollingPolicy>
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">
<!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符-->
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
</encoder>
<!--日志文件最大的大小-->
<triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
<MaxFileSize>10MB</MaxFileSize>
</triggeringPolicy>
</appender>
<logger name="com.vmware.netty" level="DEBUG" />
<!-- 日志输出级别 -->
<root level="DEBUG">
<appender-ref ref="STDOUT" />
<appender-ref ref="FILE"/>
</root>
</configuration>
测试NIO
@Slf4j
public class TestBuffer {
public static void main(String[] args) {
//获取channel 1.调用输入输出流的api间接获取 2.通过RandomAccessFile
try (FileChannel channel = new FileInputStream("f.txt").getChannel()) {
//准备缓冲区
ByteBuffer byteBuffer=ByteBuffer.allocate(10);//申请一个10字节大小的缓冲区
while (true) {
//从channel中读取数据,会返回读取的字节数,如果channel中的数据读取完成则返回-1
int len = channel.read(byteBuffer);
log.debug("读取到的字节数:{}",len);
if (len==-1){
break;
}
//设置byteBuffer为读模式
byteBuffer.flip(); //flip:空翻
while (byteBuffer.hasRemaining()) {//判断是否还有剩余未读数据
byte data = byteBuffer.get();//从buffer中读取一个字节的内容
log.debug("读取数据:{}", (char) data);
}
//切换bytebuffer为写模式
byteBuffer.clear();
}
} catch (IOException e) {
}
}
}
ByteBuffer使用流程
1.向buffer写入数据,例如调用channel.read(buffer)
2.调用flip()切换到读模式(默认为写模式)
3.从buffer中读取数据,例如调用buffer.get()
4.调用clear()或compact()切换到写模式
5.重复1-4步骤
ByteBuffer结构
ByteBuffer有以下重要属性
- capacity:容量
- position:读写指针索引位置
- limit:可操作区的边界值
一开始
写模式下,position是写入位置,limit等于容量,下图为写入了4个字节后的状态
flip动作发生后,position切换为读取位置,limit切换为读取限制
读取4个字节后,状态
clear动作发生后,状态
compact方法,是把未读完的部分向前压缩,然后切换为写模式
ByteBuffer调试工具类
public class ByteBufferUtil {
private static final char[] BYTE2CHAR = new char[256];
private static final char[] HEXDUMP_TABLE = new char[256 * 4];
private static final String[] HEXPADDING = new String[16];
private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];
private static final String[] BYTE2HEX = new String[256];
private static final String[] BYTEPADDING = new String[16];
static {
final char[] DIGITS = "0123456789abcdef".toCharArray();
for (int i = 0; i < 256; i++) {
HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];
HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];
}
int i;
// Generate the lookup table for hex dump paddings
for (i = 0; i < HEXPADDING.length; i++) {
int padding = HEXPADDING.length - i;
StringBuilder buf = new StringBuilder(padding * 3);
for (int j = 0; j < padding; j++) {
buf.append(" ");
}
HEXPADDING[i] = buf.toString();
}
// Generate the lookup table for the start-offset header in each row (up to 64KiB).
for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {
StringBuilder buf = new StringBuilder(12);
buf.append(StringUtil.NEWLINE);
buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));
buf.setCharAt(buf.length() - 9, '|');
buf.append('|');
HEXDUMP_ROWPREFIXES[i] = buf.toString();
}
// Generate the lookup table for byte-to-hex-dump conversion
for (i = 0; i < BYTE2HEX.length; i++) {
BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);
}
// Generate the lookup table for byte dump paddings
for (i = 0; i < BYTEPADDING.length; i++) {
int padding = BYTEPADDING.length - i;
StringBuilder buf = new StringBuilder(padding);
for (int j = 0; j < padding; j++) {
buf.append(' ');
}
BYTEPADDING[i] = buf.toString();
}
// Generate the lookup table for byte-to-char conversion
for (i = 0; i < BYTE2CHAR.length; i++) {
if (i <= 0x1f || i >= 0x7f) {
BYTE2CHAR[i] = '.';
} else {
BYTE2CHAR[i] = (char) i;
}
}
}
/**
* 打印所有内容
* @param buffer
*/
public static void debugAll(ByteBuffer buffer) {
int oldlimit = buffer.limit();
buffer.limit(buffer.capacity());
StringBuilder origin = new StringBuilder(256);
appendPrettyHexDump(origin, buffer, 0, buffer.capacity());
System.out.println("+--------+-------------------- all ------------------------+----------------+");
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);
System.out.println(origin);
buffer.limit(oldlimit);
}
/**
* 打印可读取内容
* @param buffer
*/
public static void debugRead(ByteBuffer buffer) {
StringBuilder builder = new StringBuilder(256);
appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());
System.out.println("+--------+-------------------- read -----------------------+----------------+");
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());
System.out.println(builder);
}
private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {
if (MathUtil.isOutOfBounds(offset, length, buf.capacity())) {
throw new IndexOutOfBoundsException(
"expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length
+ ") <= " + "buf.capacity(" + buf.capacity() + ')');
}
if (length == 0) {
return;
}
dump.append(
" +-------------------------------------------------+" +
StringUtil.NEWLINE + " | 0 1 2 3 4 5 6 7 8 9 a b c d e f |" +
StringUtil.NEWLINE + "+--------+-------------------------------------------------+----------------+");
final int startIndex = offset;
final int fullRows = length >>> 4;
final int remainder = length & 0xF;
// Dump the rows which have 16 bytes.
for (int row = 0; row < fullRows; row++) {
int rowStartIndex = (row << 4) + startIndex;
// Per-row prefix.
appendHexDumpRowPrefix(dump, row, rowStartIndex);
// Hex dump
int rowEndIndex = rowStartIndex + 16;
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
}
dump.append(" |");
// ASCII dump
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
}
dump.append('|');
}
// Dump the last row which has less than 16 bytes.
if (remainder != 0) {
int rowStartIndex = (fullRows << 4) + startIndex;
appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);
// Hex dump
int rowEndIndex = rowStartIndex + remainder;
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
}
dump.append(HEXPADDING[remainder]);
dump.append(" |");
// Ascii dump
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
}
dump.append(BYTEPADDING[remainder]);
dump.append('|');
}
dump.append(StringUtil.NEWLINE +
"+--------+-------------------------------------------------+----------------+");
}
private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {
if (row < HEXDUMP_ROWPREFIXES.length) {
dump.append(HEXDUMP_ROWPREFIXES[row]);
} else {
dump.append(StringUtil.NEWLINE);
dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));
dump.setCharAt(dump.length() - 9, '|');
dump.append('|');
}
}
public static short getUnsignedByte(ByteBuffer buffer, int index) {
return (short) (buffer.get(index) & 0xFF);
}
}
调用调试工具类
public class TestByteBufferUtil {
public static void main(String[] args) {
ByteBuffer buffer = ByteBuffer.allocate(10);
debugAll(buffer);
buffer.put((byte) 0x61);
debugAll(buffer);
buffer.put(new byte[]{0x62, 0x63});
debugAll(buffer);
buffer.flip();//切换到读模式
byte data = buffer.get();
System.out.println((char) data);
debugAll(buffer);
// buffer.compact();//切换到写模式
// debugAll(buffer);
// buffer.put((byte)0x64);
// debugAll(buffer);
buffer.clear();
debugAll(buffer);
}
}
控制台
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 00 00 00 00 00 00 00 |abc....... |
+--------+-------------------------------------------------+----------------+
ByteBuffer的常见方法
分配空间
可以调用allocate方法为ByteBuffer分配空间,其他buffer类也有该方法
ByteBuffer buffer = ByteBuffer.allocate(10);//java.nio.HeapByteBuffer 堆内存 ByteBuffer buffer2 = ByteBuffer.allocateDirect(15);//java.nio.DirectByteBuffer 直接内存
- java.nio.HeapByteBuffer: 堆内存,读写效率较低,受到GC的影响(数据会受复制算法影响,地址改变)
- java.nio.DirectByteBuffer:直接内存,读写效率高(少一次拷贝),不会受GC影响,分配效率低
向buffer写入数据
调用channel的read方法
int read = channel.read(buffer);
调用buffer的put方法
buffer.put(new byte[]{0x17,0x18});
从buffer中读取数据
调用channel的write方法
int writeBytes = channel.write(buffer);
调用buffer的get方法
byte data = buffer.get();
get方法会让position读指针向后走,如果想要重复获取数据
- 可以调用rewind方法将position重新置为0
- 或者调用get(int i)方法获取索引i的内容,它不会移动读指针
其他方法
- rewind:从头开始读
- mark&reset:mark做一个标记,记录position的位置,reset是将position重置到mark的位置
public class TestBuffer3 {
public static void main(String[] args) {
ByteBuffer buffer = ByteBuffer.allocate(10);
buffer.put(new byte[]{
0x62,0x63,0x64
});
ByteBufferUtil.debugAll(buffer);
buffer.flip();//切换读模式
System.out.println((char) buffer.get());//b
buffer.mark();//标记
System.out.println((char) buffer.get());//c
System.out.println((char) buffer.get());//d
buffer.reset();//返回标记位
System.out.println((char) buffer.get());//c
System.out.println((char) buffer.get());//d
buffer.rewind();//从头开始读
System.out.println((char) buffer.get());//b
}
}
ByteBuffer与字符串相互转换
- ByteBuffer.warp(byte[] data):转ByteBuffer
- StandardCharsets.UTF_8.encode(String s):转ByteBuffer
- StandardCharsets.UTF_8.decode(ByteBuffer buffer):转ByteBuffer为字符串
public class ByteBufferRevString {
public static void main(String[] args) {
//字符串转ByteBuffer
//1.通过默认方法
byte[] bytes = "hello".getBytes();
ByteBuffer byteBuffer = ByteBuffer.allocate(16);
byteBuffer.put(bytes);
ByteBufferUtil.debugAll(byteBuffer);
//2.通过CharSet工具类 自动转为读模式
ByteBuffer buffer2 = StandardCharsets.UTF_8.encode("hello");
ByteBufferUtil.debugAll(buffer2);
//通过bytebuffer的warp方法 自动转为读模式
ByteBuffer buffer3 = ByteBuffer.wrap(bytes);
ByteBufferUtil.debugAll(buffer3);
//ByteBuffer转字符串
byteBuffer.flip();//转读模式
String string = StandardCharsets.UTF_8.decode(byteBuffer).toString();//hello
System.out.println(string);
String string1 = StandardCharsets.UTF_8.decode(buffer2).toString(); //hello
System.out.println(string1);
}
}
分散读与集中写
分散读
分散读就是要读取一部分数据,并且这部分数据最后要送入不同的buffer中,一种方法是先把他全部都读进来,然后分给不同的buffer,另一种就是使用一个channel,直接将数据送入不同的buffer中,需要注意的是,这些buffer的大小应该设置成它应该存入的数据的大小。channel中有read方法,参数可以是一个buffer,也可以是一个buffer数组,可以将需要读入的buffer组成一个buffer数组进行分散读
示例代码
public class TestScatterRead {
public static void main(String[] args) {
try (FileChannel channel = new RandomAccessFile("b.txt", "r").getChannel()) {
ByteBuffer buffer1 = ByteBuffer.allocate(5);
ByteBuffer buffer2 = ByteBuffer.allocate(5);
ByteBuffer buffer3 = ByteBuffer.allocate(3);
channel.read(new ByteBuffer[]{
buffer1,buffer2,buffer3
});
debugAll(buffer1);
debugAll(buffer2);
debugAll(buffer3);
} catch (IOException e) {
}
}
}
集中写
集中写的思想是当有多个buffer想要写到一个文件中,同样有两种方式,一种是遍历每一个buffer,然后把各自的内容输出到文件中,第二种是集中写的方法,既使用一个channel,直接把所有buffer的内容放入文件中。channel中有方法write,同样的,可以给这个方法传入一组buffer,进行集中写
示例代码
public class TestGatheringWrite {
public static void main(String[] args) {
ByteBuffer buffer = StandardCharsets.UTF_8.encode("hello");
ByteBuffer buffer1 = StandardCharsets.UTF_8.encode("world");
ByteBuffer buffer2 = StandardCharsets.UTF_8.encode("123");
try (FileChannel channel = new RandomAccessFile("c.txt", "rw").getChannel()) {
channel.write(new ByteBuffer[]{
buffer,buffer1,buffer2
});
} catch (IOException e) {
}
}
}
粘包和半包
什么是粘包和半包?
粘包是指数据在传输时,在一条消息中读取到了另一条消息的部分数据,这种现象称为粘包。
半包问题是指接收端只收到了部分数据,而非完整的数据就叫做半包。比如发送了一条消息是"ABC",而接收端却收到的是“AB”和"C"两条消息,这种情况叫半包
模拟粘包半包处理
public class TestByteBufferExam {
public static void main(String[] args) {
ByteBuffer buffer = ByteBuffer.allocate(32);
buffer.put("Hello,world\nI'm zhangsan\nHo".getBytes());
split(buffer);
buffer.put("w are you?\n".getBytes());
split(buffer);
}
//处理粘包和半包
private static void split(ByteBuffer buffer) {
buffer.flip();
for (int index = 0; index < buffer.limit(); index++) {
if (buffer.get(index) == '\n') {
int length = index + 1 - buffer.position();
ByteBuffer allocate = ByteBuffer.allocate(length);
for (int i = 0; i < length; i++) {
allocate.put(buffer.get());
}
debugAll(allocate);
}
}
buffer.compact();
}
}