NIO与BIO

简介: NIO与BIO

NIO与BIO

Stream与Channel

  • stream 不会自动缓冲数据,channel 会利用系统提供的发送缓冲区、接收缓冲区(更为底层)
  • stream 仅支持阻塞 API,channel 同时支持阻塞、非阻塞 API,网络 channel 可配合 selector 实现多路复用
  • 二者均为全双工,即读写可以同时进行

    • 虽然Stream是单向流动的,但是它也是全双工的

IO模型

  • 同步:线程自己去获取结果(一个线程)

    • 例如:线程调用一个方法后,需要等待方法返回结果
  • 异步:线程自己不去获取结果,而是由其它线程返回结果(至少两个线程)

    • 例如:线程A调用一个方法后,继续向下运行,运行结果由线程B返回

当调用一次 channel.read 或 stream.read 后,会由用户态切换至操作系统内核态来完成真正数据读取,而读取又分为两个阶段,分别为:

  • 等待数据阶段
  • 复制数据阶段

585a4ca1fcac422e818c9d77a4435027.png

根据UNIX 网络编程 - 卷 I,IO模型主要有以下几种

阻塞IO

7dda19dfa0d9479a86d1a7ed9ed33c1f.png

  • 用户线程进行read操作时,需要等待操作系统执行实际的read操作,此期间用户线程是被阻塞的,无法执行其他操作
非阻塞IO

29f8cde582a8436aa2b774ff9eb00e3f.png

  • 用户线程

    在一个循环中一直调用read方法,若内核空间中还没有数据可读,立即返回,只是在等待阶段非阻塞

  • 用户线程发现内核空间中有数据后,等待内核空间执行复制数据,待复制结束后返回结果
多路复用

e6c7b4cd5ecb4a239af25f89a82bf4d8.png

Java中通过Selector实现多路复用

  • 当没有事件时,调用select方法会被阻塞住
  • 一旦有一个或多个事件发生后,就会处理对应的事件,从而实现多路复用

多路复用与阻塞IO的区别

  • 阻塞IO模式下,若线程因accept事件被阻塞,发生read事件后,仍需等待accept事件执行完成后,才能去处理read事件
  • 多路复用模式下,一个事件发生后,若另一个事件处于阻塞状态,不会影响该事件的执行
异步IO

aa338bba72424038a23bf36278febf12.png

  • 线程1调用方法后立即返回,不会被阻塞也不需要立即获取结果
  • 当方法的运行结果出来以后,由线程2将结果返回给线程1

零拷贝

零拷贝指的是数据无需拷贝到 JVM 内存中,同时具有以下三个优点

  • 更少的用户态与内核态的切换
  • 不利用 cpu 计算,减少 cpu 缓存伪共享
  • 零拷贝适合小文件传输
传统 IO 问题

传统的 IO 将一个文件通过 socket 写出

File f = new File("helloword/data.txt");
RandomAccessFile file = new RandomAccessFile(file, "r");

byte[] buf = new byte[(int)f.length()];
file.read(buf);

Socket socket = ...;
socket.getOutputStream().write(buf);

内部工作流程如下

adc0d43add8a4ad88a8f653387a45b1e.png

  • Java 本身并不具备 IO 读写能力,因此 read 方法调用后,要从 Java 程序的用户态切换至内核态,去调用操作系统(Kernel)的读能力,将数据读入内核缓冲区。这期间用户线程阻塞,操作系统使用 DMA(Direct Memory Access)来实现文件读,其间也不会使用 CPU

    • DMA 也可以理解为硬件单元,用来解放 cpu 完成文件 IO
  • 内核态切换回用户态,将数据从**内核a8f1657ae5734172abacfd7049269423.png

缓冲区读入用户缓冲区(即 byte[] buf),这期间 CPU 会参与拷贝**,无法利用 DMA

  • 调用 write 方法,这时将数据从用户缓冲区(byte[] buf)写入 socket 缓冲区,CPU 会参与拷贝
  • 接下来要向网卡写数据,这项能力 Java 又不具备,因此又得从用户态切换至内核态,调用操作系统的写能力,使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 CPU

可以看到中间环节较多,java 的 IO 实际不是物理设备级别的读写,而是缓存的复制,底层的真正读写是操作系统来完成的

  • 用户态与内核态的切换发生了 3 次,这个操作比较重量级
  • 数据拷贝了共 4 次
NIO 优化

通过 DirectByteBuf

  • ByteBuffer.allocate(10):底层对应 HeapByteBuffer,使用的还是 Java 内存
  • ByteBuffer.allocateDirect(10):底层对应DirectByteBuffer,使用的是操作系统内存

6db4a39b64304ef7889f6cb7a4a81afe.png

大部分步骤与优化前相同,唯有一点:Java 可以使用 DirectByteBuffer 将堆外内存映射到 JVM 内存中来直接访问使用

  • 这块内存不受 JVM 垃圾回收的影响,因此内存地址固定,有助于 IO 读写
  • Java 中的 DirectByteBuf 对象仅维护了此内存的虚引用,内存回收分成两步

    • DirectByteBuffer 对象被垃圾回收,将虚引用加入引用队列

      • 当引用的对象ByteBuffer被垃圾回收以后,虚引用对象Cleaner就会被放入引用队列中,然后调用Cleaner的clean方法来释放直接内存
      • DirectByteBuffer 的释放底层调用的是 Unsafe 的 freeMemory 方法
    • 通过专门线程访问引用队列,根据虚引用释放堆外内存
  • 减少了一次数据拷贝,用户态与内核态的切换次数没有减少
进一步优化

以下两种方式都是零拷贝,即无需将数据拷贝到用户缓冲区中(JVM内存中)

底层采用了 linux 2.1 后提供的 sendFile 方法,Java 中对应着两个 channel 调用 transferTo/transferFrom 方法拷贝数据

ec2858ebceda439eb850e140d67cbe93.png

  • ava 调用 transferTo 方法后,要从 Java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 CPU
  • 数据从内核缓冲区传输到 socket 缓冲区,CPU 会参与拷贝
  • 最后使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 CPU

这种方法下

  • 只发生了1次用户态与内核态的切换
  • 数据拷贝了 3 次
进一步优化2

linux 2.4 对上述方法再次进行了优化

a8f1657ae5734172abacfd7049269423.png

  • Java 调用 transferTo 方法后,要从 Java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 CPU
  • 只会将一些 offset 和 length 信息拷入 socket 缓冲区,几乎无消耗
  • 使用 DMA 将 内核缓冲区的数据写入网卡,不会使用 CPU

整个过程仅只发生了1次用户态与内核态的切换,数据拷贝了 2 次

AIO

AIO 用来解决数据复制阶段的阻塞问题

  • 同步意味着,在进行读写操作时,线程需要等待结果,还是相当于闲置
  • 异步意味着,在进行读写操作时,线程不必等待结果,而是将来由操作系统来通过回调方式由另外的线程来获得结果

异步模型需要底层操作系统(Kernel)提供支持

  • Windows 系统通过 IOCP 实现了真正的异步 IO
  • Linux 系统异步 IO 在 2.6 版本引入,但其底层实现还是用多路复用模拟了异步 IO,性能没有优势
文件 AIO
public class AIOTest {
    public static void main(String[] args) throws IOException {
        try {
            AsynchronousFileChannel async = AsynchronousFileChannel.open(Paths.get("b.txt"), StandardOpenOption.READ);
            ByteBuffer buffer = ByteBuffer.allocate(16);
            async.read(buffer, 0, null, new CompletionHandler<Integer, ByteBuffer>() {
                @Override
                public void completed(Integer result, ByteBuffer attachment) {
                    System.out.println("read finish! "+result);
                    buffer.flip();
                    ByteBufferUtil.debugAll(buffer);
                }

                @Override
                public void failed(Throwable exc, ByteBuffer attachment) {
                    System.out.println("read failed!");
                }
            });
        } catch (Exception e) {
            e.printStackTrace();
        }

        System.out.println("do other things");
        System.in.read();
    }
}
do other things
read finish! 14
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [14]
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f 77 6f 72 6c 64 31 32 33 34 00 00 |helloworld1234..|
+--------+-------------------------------------------------+----------------+

可以看到

  • 响应文件读取成功的是另一个线程
  • 主线程并没有 IO 操作阻塞
网络AIO
public class AioServer {
    public static void main(String[] args) throws IOException {
        AsynchronousServerSocketChannel ssc = AsynchronousServerSocketChannel.open();
        ssc.bind(new InetSocketAddress(8080));
        ssc.accept(null, new AcceptHandler(ssc));
        System.in.read();
    }

    private static void closeChannel(AsynchronousSocketChannel sc) {
        try {
            System.out.printf("[%s] %s close\n", Thread.currentThread().getName(), sc.getRemoteAddress());
            sc.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    private static class ReadHandler implements CompletionHandler<Integer, ByteBuffer> {
        private final AsynchronousSocketChannel sc;

        public ReadHandler(AsynchronousSocketChannel sc) {
            this.sc = sc;
        }

        @Override
        public void completed(Integer result, ByteBuffer attachment) {
            try {
                if (result == -1) {
                    closeChannel(sc);
                    return;
                }
                System.out.printf("[%s] %s read\n", Thread.currentThread().getName(), sc.getRemoteAddress());
                attachment.flip();
                System.out.println(Charset.defaultCharset().decode(attachment));
                attachment.clear();
                // 处理完第一个 read 时,需要再次调用 read 方法来处理下一个 read 事件
                sc.read(attachment, attachment, this);
            } catch (IOException e) {
                e.printStackTrace();
            }
        }

        @Override
        public void failed(Throwable exc, ByteBuffer attachment) {
            closeChannel(sc);
            exc.printStackTrace();
        }
    }

    private static class WriteHandler implements CompletionHandler<Integer, ByteBuffer> {
        private final AsynchronousSocketChannel sc;

        private WriteHandler(AsynchronousSocketChannel sc) {
            this.sc = sc;
        }

        @Override
        public void completed(Integer result, ByteBuffer attachment) {
            // 如果作为附件的 buffer 还有内容,需要再次 write 写出剩余内容
            if (attachment.hasRemaining()) {
                sc.write(attachment);
            }
        }

        @Override
        public void failed(Throwable exc, ByteBuffer attachment) {
            exc.printStackTrace();
            closeChannel(sc);
        }
    }

    private static class AcceptHandler implements CompletionHandler<AsynchronousSocketChannel, Object> {
        private final AsynchronousServerSocketChannel ssc;

        public AcceptHandler(AsynchronousServerSocketChannel ssc) {
            this.ssc = ssc;
        }

        @Override
        public void completed(AsynchronousSocketChannel sc, Object attachment) {
            try {
                System.out.printf("[%s] %s connected\n", Thread.currentThread().getName(), sc.getRemoteAddress());
            } catch (IOException e) {
                e.printStackTrace();
            }
            ByteBuffer buffer = ByteBuffer.allocate(16);
            // 读事件由 ReadHandler 处理
            sc.read(buffer, buffer, new ReadHandler(sc));
            // 写事件由 WriteHandler 处理
            sc.write(Charset.defaultCharset().encode("server hello!"), ByteBuffer.allocate(16), new WriteHandler(sc));
            // 处理完第一个 accpet 时,需要再次调用 accept 方法来处理下一个 accept 事件
            ssc.accept(null, this);
        }

        @Override
        public void failed(Throwable exc, Object attachment) {
            exc.printStackTrace();
        }
    }
}
相关文章
|
Java
BIO,NIO,AIO 有什么区别?
BIO,NIO,AIO 有什么区别? BIO:Block IO 同步阻塞式 IO,就是我们平常使用的传统 IO,它的特点是模式简单使用方便,并发处理能力低。
55 0
|
7天前
|
网络协议 Dubbo Java
一文搞懂NIO、AIO、BIO的核心区别(建议收藏)
本文详细解析了NIO、AIO、BIO的核心区别,NIO的三个核心概念,以及NIO在Java框架中的应用等。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
一文搞懂NIO、AIO、BIO的核心区别(建议收藏)
|
3月前
|
设计模式
Lettuce的特性和内部实现问题之Netty NIO的性能优于BIO的问题如何解决
Lettuce的特性和内部实现问题之Netty NIO的性能优于BIO的问题如何解决
|
2月前
|
Java
Netty BIO/NIO/AIO介绍
Netty BIO/NIO/AIO介绍
|
1月前
|
Java Linux 应用服务中间件
【编程进阶知识】高并发场景下Bio与Nio的比较及原理示意图
本文介绍了在Linux系统上使用Tomcat部署Java应用程序时,BIO(阻塞I/O)和NIO(非阻塞I/O)在网络编程中的实现和性能差异。BIO采用传统的线程模型,每个连接请求都会创建一个新线程进行处理,导致在高并发场景下存在严重的性能瓶颈,如阻塞等待和线程创建开销大等问题。而NIO则通过事件驱动机制,利用事件注册、事件轮询器和事件通知,实现了更高效的连接管理和数据传输,避免了阻塞和多级数据复制,显著提升了系统的并发处理能力。
56 0
|
3月前
|
缓存 Java UED
BIO、NIO、AIO有什么区别
【8月更文挑战第16天】BIO、NIO、AIO有什么区别
77 4
|
3月前
|
Java
"揭秘Java IO三大模式:BIO、NIO、AIO背后的秘密!为何AIO成为高并发时代的宠儿,你的选择对了吗?"
【8月更文挑战第19天】在Java的IO编程中,BIO、NIO与AIO代表了三种不同的IO处理机制。BIO采用同步阻塞模型,每个连接需单独线程处理,适用于连接少且稳定的场景。NIO引入了非阻塞性质,利用Channel、Buffer与Selector实现多路复用,提升了效率与吞吐量。AIO则是真正的异步IO,在JDK 7中引入,通过回调或Future机制在IO操作完成后通知应用,适合高并发场景。选择合适的模型对构建高效网络应用至关重要。
81 2
|
4月前
|
安全 Java Linux
(七)Java网络编程-IO模型篇之从BIO、NIO、AIO到内核select、epoll剖析!
IO(Input/Output)方面的基本知识,相信大家都不陌生,毕竟这也是在学习编程基础时就已经接触过的内容,但最初的IO教学大多数是停留在最基本的BIO,而并未对于NIO、AIO、多路复用等的高级内容进行详细讲述,但这些却是大部分高性能技术的底层核心,因此本文则准备围绕着IO知识进行展开。
165 1
|
5月前
|
Java 视频直播 数据库连接
Java I/O 模型详解:BIO、NIO 与 AIO 的特性与应用
Java I/O 模型详解:BIO、NIO 与 AIO 的特性与应用
66 2
|
4月前
|
监控 网络协议 Java
Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
74 0