十一、操作delete或者update语句,加个limit或者循环分批次删除
1、降低写错SQL的代价
清空表数据可不是小事情,一个手抖全没了,删库跑路?如果加limit,删错也只是丢失部分数据,可以通过binlog日志快速恢复的。
2、SQL效率很可能更高
SQL中加了limit 1
,如果第一条就命中目标return
, 没有limit
的话,还会继续执行扫描表。
3、避免长事务
delete
执行时,如果age
加了索引,MySQL会将所有相关的行加写锁和间隙锁,所有执行相关行会被锁住,如果删除数量大,会直接影响相关业务无法使用。
4、数据量大的话,容易把CPU打满
如果你删除数据量很大时,不加 limit限制一下记录数,容易把cpu
打满,导致越删越慢。
5、锁表
一次性删除太多数据,可能造成锁表,会有lock wait timeout exceed的错误,所以建议分批操作。
十二、UNION操作符
UNION
在进行表链接后会筛选掉重复的记录,所以在表链接后会对所产生的结果集进行排序运算,删除重复的记录再返回结果。实际大部分应用中是不会产生重复的记录,最常见的是过程表与历史表UNION
。如:
select username,tel from user union select departmentname from department
这个SQL在运行时先取出两个表的结果,再用排序空间进行排序删除重复的记录,最后返回结果集,如果表数据量大的话可能会导致用磁盘进行排序。推荐方案:采用UNION ALL
操作符替代UNION
,因为UNION ALL
操作只是简单的将两个结果合并后就返回。
十三、批量插入性能提升
1、多条提交
INSERT INTO user (id,username) VALUES(1,'哪吒编程'); INSERT INTO user (id,username) VALUES(2,'妲己');
2、批量提交
INSERT INTO user (id,username) VALUES(1,'哪吒编程'),(2,'妲己');
3、理由
默认新增SQL有事务控制,导致每条都需要事务开启和事务提交,而批量处理是一次事务开启和提交,效率提升明显,达到一定量级,效果显著,平时看不出来。
十四、表连接不宜太多,索引不宜太多,一般5个以内
1、表连接不宜太多,一般5个以内
- 关联的表个数越多,编译的时间和开销也就越大
- 每次关联内存中都生成一个临时表
- 应该把连接表拆开成较小的几个执行,可读性更高
- 如果一定需要连接很多表才能得到数据,那么意味着这是个糟糕的设计了
- 阿里规范中,建议多表联查三张表以下
2、索引不宜太多,一般5个以内
- 索引并不是越多越好,虽其提高了查询的效率,但却会降低插入和更新的效率;
- 索引可以理解为一个就是一张表,其可以存储数据,其数据就要占空间;
- 索引表的数据是排序的,排序也是要花时间的;
insert
或update
时有可能会重建索引,如果数据量巨大,重建将进行记录的重新排序,所以建索引需要慎重考虑,视具体情况来定;- 一个表的索引数最好不要超过5个,若太多需要考虑一些索引是否有存在的必要;
十五、避免在索引列上使用内置函数
1、反例
SELECT * FROM user WHERE DATE_ADD(birthday,INTERVAL 7 DAY) >=NOW();
2、正例
SELECT * FROM user WHERE birthday >= DATE_ADD(NOW(),INTERVAL 7 DAY);
3、理由
使用索引列上内置函数,索引失效。
十六、组合索引
排序时应按照组合索引中各列的顺序进行排序,即使索引中只有一个列是要排序的,否则排序性能会比较差。
create index IDX_USERNAME_TEL on user(deptid,position,createtime); select username,tel from user where deptid= 1 and position = 'java开发' order by deptid,position,createtime desc;
实际上只是查询出符合deptid= 1 and position = 'java开发'
条件的记录并按createtime降序排序,但写成order by createtime desc性能较差。
十七、复合索引最左特性
1、创建复合索引
ALTER TABLE employee ADD INDEX idx_name_salary (name,salary)
2、满足复合索引的最左特性,哪怕只是部分,复合索引生效
SELECT * FROM employee WHERE NAME='哪吒编程'
3、没有出现左边的字段,则不满足最左特性,索引失效
SELECT * FROM employee WHERE salary=5000
4、复合索引全使用,按左侧顺序出现 name,salary,索引生效
SELECT * FROM employee WHERE NAME='哪吒编程' AND salary=5000
5、虽然违背了最左特性,但MySQL执行SQL时会进行优化,底层进行颠倒优化
SELECT * FROM employee WHERE salary=5000 AND NAME='哪吒编程'
6、理由
复合索引也称为联合索引,当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则。
联合索引不满足最左原则,索引一般会失效。
十八、优化like语句
模糊查询,程序员最喜欢的就是使用like
,但是like
很可能让你的索引失效。
1、反例
select * from citys where name like '%大连' (不使用索引) select * from citys where name like '%大连%' (不使用索引)
2、正例
select * from citys where name like '大连%' (使用索引) 。
3、理由
- 首先尽量避免模糊查询,如果必须使用,不采用全模糊查询,也应尽量采用右模糊查询, 即
like ‘…%’
,是会使用索引的; - 左模糊
like ‘%...’
无法直接使用索引,但可以利用reverse + function index
的形式,变化成like ‘…%’
; - 全模糊查询是无法优化的,一定要使用的话建议使用搜索引擎。
十九、使用explain分析你SQL执行计划
1、type
- system:表仅有一行,基本用不到;
- const:表最多一行数据配合,主键查询时触发较多;
- eq_ref:对于每个来自于前面的表的行组合,从该表中读取一行。这可能是最好的联接类型,除了const类型;
- ref:对于每个来自于前面的表的行组合,所有有匹配索引值的行将从这张表中读取;
- range:只检索给定范围的行,使用一个索引来选择行。当使用=、<>、>、>=、<、<=、IS NULL、<=>、BETWEEN或者IN操作符,用常量比较关键字列时,可以使用range;
- index:该联接类型与ALL相同,除了只有索引树被扫描。这通常比ALL快,因为索引文件通常比数据文件小;
- all:全表扫描;
- 性能排名:system > const > eq_ref > ref > range > index > all。
- 实际sql优化中,最后达到ref或range级别。
2、Extra常用关键字
- Using index:只从索引树中获取信息,而不需要回表查询;
- Using where:WHERE子句用于限制哪一个行匹配下一个表或发送到客户。除非你专门从表中索取或检查所有行,如果Extra值不为Using where并且表联接类型为ALL或index,查询可能会有一些错误。需要回表查询。
- Using temporary:mysql常建一个临时表来容纳结果,典型情况如查询包含可以按不同情况列出列的
GROUP BY
和ORDER BY
子句时;
二十、一些其它优化方式
1、设计表的时候,所有表和字段都添加相应的注释。
2、SQL书写格式,关键字大小保持一致,使用缩进。
3、修改或删除重要数据前,要先备份。
4、很多时候用 exists 代替 in 是一个好的选择
5、where后面的字段,留意其数据类型的隐式转换。
未使用索引
SELECT * FROM user WHERE NAME=110
(1) 因为不加单引号时,是字符串跟数字的比较,它们类型不匹配;
(2)MySQL会做隐式的类型转换,把它们转换为数值类型再做比较;
6、尽量把所有列定义为NOT NULL
NOT NULL
列更节省空间,NULL
列需要一个额外字节作为判断是否为NULL
的标志位。NULL
列需要注意空指针问题,NULL
列在计算和比较的时候,需要注意空指针问题。
7、伪删除设计
8、数据库和表的字符集尽量统一使用UTF8
(1)可以避免乱码问题;
(2)可以避免,不同字符集比较转换,导致的索引失效问题;
9、select count(*) from table;
这样不带任何条件的count会引起全表扫描,并且没有任何业务意义,是一定要杜绝的。
10、避免在where中对字段进行表达式操作
(1)SQL解析时,如果字段相关的是表达式就进行全表扫描 ;
(2)字段干净无表达式,索引生效;
11、关于临时表
(1)避免频繁创建和删除临时表,以减少系统表资源的消耗;
(2)在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log;
(3)如果数据量不大,为了缓和系统表的资源,应先create table,然后insert;
(4)如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除。先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定;
12、索引不适合建在有大量重复数据的字段上,比如性别,排序字段应创建索引
13、去重distinct过滤字段要少
- 带distinct的语句占用
cpu
时间高于不带distinct
的语句 - 当查询很多字段时,如果使用
distinct
,数据库引擎就会对数据进行比较,过滤掉重复数据 - 然而这个比较、过滤的过程会占用系统资源,如
cpu
时间
14、尽量避免大事务操作,提高系统并发能力
15、所有表必须使用Innodb
存储引擎
Innodb
「支持事务,支持行级锁,更好的恢复性」,高并发下性能更好,所以呢,没有特殊要求(即Innodb
无法满足的功能如:列存储,存储空间数据等)的情况下,所有表必须使用Innodb
存储引擎。
16、尽量避免使用游标
因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。