开源分布式任务调度系统就选它!

简介: 开源分布式任务调度系统就选它!



分布式任务调度这个话题是每个后端开发和大数据开发都会接触的话题。因为应用场景的广泛,所以有很多开源项目专注于解决这类问题,比如我们熟知的xxl-job。

那么今天要给大家推荐的则是另一个更为强大的开源项目:DolphinScheduler

介绍

DolphinScheduler是一款开源的分布式任务调度系统,它可以帮助开发人员更加方便地进行任务调度和管理。DolphinScheduler支持常见的任务类型,包括Shell、Hadoop、Spark、Hive等,同时它也提供了可视化的任务编排和监控,使得任务管理变得更加简单。DolphinScheduler的开发团队源于支付宝的数据平台团队,经历了多年的实践和积累,已经成为了一个成熟的开源项目。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

特点

分布式任务调度

DolphinScheduler支持分布式部署,可以扩展到上千台服务器,实现高可用和高并发的任务调度。

多种任务类型

DolphinScheduler支持多种任务类型,包括Shell、Hadoop、Spark、Hive、MR、Python等,在此基础上还可以支持自定义任务类型,方便用户扩展。

可视化任务编排和监控

DolphinScheduler提供了可视化的任务编排和监控,可以方便地查看任务依赖关系、任务执行情况等信息,帮助用户更好地管理任务。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

DolphinScheduler的应用场景

数据处理

DolphinScheduler可以应用于数据处理场景,例如数据采集、数据清洗、数据分析等。用户可以通过DolphinScheduler轻松地配置和管理这些任务,同时也可以实现任务的并发执行和分布式处理。

业务流程

DolphinScheduler可以应用于业务流程场景,例如电商的订单管理、物流管理等。用户可以通过DolphinScheduler将不同的业务流程任务进行编排,实现自动化执行和监控。

系统集成

DolphinScheduler可以应用于系统集成场景,例如将多个系统的数据进行整合和处理。用户可以通过DolphinScheduler配置和管理不同系统之间的数据同步和交互任务,实现系统集成的自动化。

结论

DolphinScheduler是一款成熟的开源分布式任务调度系统,它支持多种任务类型、可视化任务编排和监控,适用于不同的应用场景。如果您正在寻找一款任务调度系统,那么不妨考虑一下DolphinScheduler。



相关文章
|
6月前
|
Kubernetes 大数据 调度
Airflow vs Argo Workflows:分布式任务调度系统的“华山论剑”
本文对比了Apache Airflow与Argo Workflows两大分布式任务调度系统。两者均支持复杂的DAG任务编排、社区支持及任务调度功能,且具备优秀的用户界面。Airflow以Python为核心语言,适合数据科学家使用,拥有丰富的Operator库和云服务集成能力;而Argo Workflows基于Kubernetes设计,支持YAML和Python双语定义工作流,具备轻量化、高性能并发调度的优势,并通过Kubernetes的RBAC机制实现多用户隔离。在大数据和AI场景中,Airflow擅长结合云厂商服务,Argo则更适配Kubernetes生态下的深度集成。
814 34
|
2月前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
159 11
|
2月前
|
存储 算法 安全
“卧槽,系统又崩了!”——别慌,这也许是你看过最通俗易懂的分布式入门
本文深入解析分布式系统核心机制:数据分片与冗余副本实现扩展与高可用,租约、多数派及Gossip协议保障一致性与容错。探讨节点故障、网络延迟等挑战,揭示CFT/BFT容错原理,剖析规模与性能关系,为构建可靠分布式系统提供理论支撑。
194 2
|
2月前
|
机器学习/深度学习 算法 安全
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
|
4月前
|
数据采集 缓存 NoSQL
分布式新闻数据采集系统的同步效率优化实战
本文介绍了一个针对高频新闻站点的分布式爬虫系统优化方案。通过引入异步任务机制、本地缓存池、Redis pipeline 批量写入及身份池策略,系统采集效率提升近两倍,数据同步延迟显著降低,实现了分钟级热点追踪能力,为实时舆情监控与分析提供了高效、稳定的数据支持。
145 1
分布式新闻数据采集系统的同步效率优化实战
|
10月前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
757 7
|
10月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
330 7
|
9月前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
205 0
|
消息中间件 监控 数据可视化
Apache Airflow 开源最顶级的分布式工作流平台
Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。
Apache Airflow 开源最顶级的分布式工作流平台
|
11月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
625 4

热门文章

最新文章