分类预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络数据分类预测

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 分类预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络数据分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

雷达辐射源识别是电子对抗信号处理中的关键环节,是电子侦察和威胁告警系统的重要组成部分。但随着雷达技术的迅猛发展、新体制雷达的大量应用,雷达信号的密度和复杂程度都大幅升高,给复杂体制的雷达辐射源信号识别带来很大的困难,导致传统基于脉冲描述字五维特征识别的方法已经逐渐失效。而雷达辐射源信号的脉内调制作为信号的重要特征,能够减轻参数空间的混叠、提高辐射源识别率,可作为第六维特征重点研究。考虑现代雷达信号具有密度高、形式多样、非平稳等特点,本文研究基于时频预处理与卷积神经网络(CNN)的雷达辐射源识别方法。针对CNN在雷达辐射源识别中所存在的问题,重点提出基于WOA-CNN的雷达辐射源识别算法。通过大量对比实验、仿真表明,该算法具有识别率高、训练时间较短、泛化性能强等优点,更符合现代复杂电磁环境的需求。

⛄ 部分代码


function [Leader_pos,Leader_score, curve]=WOA(popsize,maxgen,dim,lb,ub,fitness)

%初始化位置向量和领导者得分

Leader_pos=zeros(1,dim);

Leader_score=10^20;  


%% 初始化种群

for i=1:dim

   ub_i=ub(i);

   lb_i=lb(i);

  Positions(:,i)=rand(popsize,1).*(ub_i-lb_i)+lb_i;

end

curve=zeros(maxgen,1);%初始化收敛曲线


%% 循环开始

h0=waitbar(0,'WOA optimization...');

for t=1:maxgen

   for i=1:size(Positions,1)%对每个个体一个一个检查是否越界

       %对每个个体一个一个检查是否越界

       % 返回超出搜索空间边界的搜索代理

       Flag4ub=Positions(i,:)>ub;

       Flag4lb=Positions(i,:)<lb;

       Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;%超过最大值的设置成最大值,超过最小值的设置成最小值

       %目标函数值的计算

       fit(i)=fitness( Positions(i,:));

       

       % 更新领导者位置

       if fit(i)<Leader_score

           Leader_score=fit(i);

           Leader_pos=Positions(i,:);

       end

   end

   

   a=2-t*((2)/maxgen);

   a2=-1+t*((-1)/maxgen);

   %参数更新

   for i=1:size(Positions,1)

       r1=rand();r2=rand();

       A=2*a*r1-a;

       C=2*r2;

     

       b=1;

       l=(a2-1)*rand+1;

       

       p = rand();

       

       for j=1:size(Positions,2)%对每一个个体地多维度进行循环运算

           %收缩包围机制

           if p<0.5

               if abs(A)>=1

                   rand_leader_index = floor(popsize*rand()+1);%floor将 X 的每个元素四舍五入到小于或等于该元素的最接近整数

                   X_rand = Positions(rand_leader_index, :);

                   D_X_rand=abs(C*X_rand(j)-Positions(i,j));

                   Positions(i,j)=X_rand(j)-A*D_X_rand;

               elseif abs(A)<1

                   D_Leader=abs(C*Leader_pos(j)-Positions(i,j));

                   Positions(i,j)=Leader_pos(j)-A*D_Leader;

               end

               %螺旋更新位置

           elseif p>=0.5

               distance2Leader=abs(Leader_pos(j)-Positions(i,j));

               Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);

           end

       end

   end

   curve(t)=Leader_score;

   waitbar(t/maxgen,h0)

end

close(h0)

setdemorandstream(pi);

⛄ 运行结果

⛄ 参考文献

[1] 陈飞. 基于多通道卷积神经网络的预应力筋混凝土梁声发射信号损伤识别研究[D]. 江苏大学.

[2] 李旭东, 李艳军, 曹愈远,等. 基于CNN-SVM的飞机EHA故障诊断算法研究[J]. 西北工业大学学报, 2023, 41(1):11.

[3] 吴琼. 基于改进CNN的雷达辐射源识别算法研究[D]. 西安电子科技大学, 2020.

[4] 王瑜, 朱婷, 张娜,等. 基于多通路卷积神经网络的图像分类方法及系统:, CN201710633647.1[P]. 2021.

[5] 卢增全, 赵清玄, 孙磊,等. 基于深度卷积神经网络的大规模鲸鱼叫声识别[C]// 中国声学学会水声学分会2019年学术会议. 0.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
15天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
49 1
|
18天前
|
机器学习/深度学习 SQL 数据采集
基于tensorflow、CNN网络识别花卉的种类(图像识别)
基于tensorflow、CNN网络识别花卉的种类(图像识别)
16 1
|
3天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
16天前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
24 0
|
17天前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
18 0
|
22天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其应用
【9月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将通过简单的代码示例,了解CNN的工作原理和应用场景。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
82 1