MySQL索引15连问,抗住!

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: MySQL索引15连问,抗住!


前言

金三银四很快就要来啦,准备了索引的15连问,相信大家看完肯定会有帮助的。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

1. 索引是什么?

  • 索引是一种能提高数据库查询效率的数据结构。它可以比作一本字典的目录,可以帮你快速找到对应的记录。
  • 索引一般存储在磁盘的文件中,它是占用物理空间的。
  • 正所谓水能载舟,也能覆舟。适当的索引能提高查询效率,过多的索引会影响数据库表的插入和更新功能。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

2. MySQL索引有哪些类型

数据结构维度

  • B+树索引:所有数据存储在叶子节点,复杂度为O(logn),适合范围查询。
  • 哈希索引:  适合等值查询,检索效率高,一次到位。
  • 全文索引:MyISAMInnoDB中都支持使用全文索引,一般在文本类型char,text,varchar类型上创建。
  • R-Tree索引: 用来对GIS数据类型创建SPATIAL索引

物理存储维度

  • 聚集索引:聚集索引就是以主键创建的索引,在叶子节点存储的是表中的数据。(Innodb存储引擎)
  • 非聚集索引:非聚集索引就是以非主键创建的索引,在叶子节点存储的是主键和索引列。(Innodb存储引擎)

逻辑维度

  • 主键索引:一种特殊的唯一索引,不允许有空值。
  • 普通索引:MySQL中基本索引类型,允许空值和重复值。
  • 联合索引:多个字段创建的索引,使用时遵循最左前缀原则。
  • 唯一索引:索引列中的值必须是唯一的,但是允许为空值。
  • 空间索引:MySQL5.7之后支持空间索引,在空间索引这方面遵循OpenGIS几何数据模型规则。

3. 索引什么时候会失效?

  • 查询条件包含or,可能导致索引失效
  • 如果字段类型是字符串,where时一定用引号括起来,否则索引失效
  • like通配符可能导致索引失效。
  • 联合索引,查询时的条件列不是联合索引中的第一个列,索引失效。
  • 在索引列上使用 mysql 的内置函数,索引失效。
  • 对索引列运算(如,+、-、*、/),索引失效。
  • 索引字段上使用(!= 或者 < >,not in)时,可能会导致索引失效。
  • 索引字段上使用is null, is not null,可能导致索引失效。
  • 左连接查询或者右连接查询查询关联的字段编码格式不一样,可能导致索引失效。
  • mysql 估计使用全表扫描要比使用索引快,则不使用索引。

4. 哪些场景不适合建立索引?

  • 数据量少的表,不适合加索引
  • 更新比较频繁的也不适合加索引
  • 区分度低的字段不适合加索引(如性别)
  • where、group by、order by等后面没有使用到的字段,不需要建立索引
  • 已经有冗余的索引的情况(比如已经有a,b的联合索引,不需要再单独建立a索引)

5. 为什么要用 B+ 树,为什么不用二叉树?

可以从几个维度去看这个问题,查询是否够快,效率是否稳定,存储数据多少, 以及查找磁盘次数,为什么不是二叉树,为什么不是平衡二叉树,为什么不是 B 树,而偏偏是 B+树呢?

为什么不是一般二叉树?

如果二叉树特殊化为一个链表,相当于全表扫描。平衡二叉树相比于二叉查找 树来说,查找效率更稳定,总体的查找速度也更快。

为什么不是平衡二叉树呢?

我们知道,在内存比在磁盘的数据,查询效率快得多。如果树这种数据结构作 为索引,那我们每查找一次数据就需要从磁盘中读取一个节点,也就是我们说 的一个磁盘块,但是平衡二叉树可是每个节点只存储一个键值和数据的,如果 是 B 树,可以存储更多的节点数据,树的高度也会降低,因此读取磁盘的次数 就降下来啦,查询效率就快啦。

那为什么不是 B 树而是 B+树呢?

  • B+树非叶子节点上是不存储数据的,仅存储键值,而 B 树节点中不仅存储 键值,也会存储数据。innodb 中页的默认大小是 16KB,如果不存储数据,那 么就会存储更多的键值,相应的树的阶数(节点的子节点树)就会更大,树就 会更矮更胖,如此一来我们查找数据进行磁盘的 IO 次数有会再次减少,数据查 询的效率也会更快。
  • B+树索引的所有数据均存储在叶子节点,而且数据是按照顺序排列的,链 表连着的。那么 B+树使得范围查找,排序查找,分组查找以及去重查找变得 异常简单。

6. 一次B+树索引树查找过程

假设有以下表结构,并且初始化了这几条数据

CREATE TABLE `employee` (
  `id` int(11) NOT NULL,
  `name` varchar(255) DEFAULT NULL,
  `age` int(11) DEFAULT NULL,
  `date` datetime DEFAULT NULL,
  `sex` int(1) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_age` (`age`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into employee values(100,'小伦',43,'2021-01-20','0');
insert into employee values(200,'俊杰',48,'2021-01-21','0');
insert into employee values(300,'紫琪',36,'2020-01-21','1');
insert into employee values(400,'立红',32,'2020-01-21','0');
insert into employee values(500,'易迅',37,'2020-01-21','1');
insert into employee values(600,'小军',49,'2021-01-21','0');
insert into employee values(700,'小燕',28,'2021-01-21','1');

执行这条查询SQL,需要执行几次的树搜索操作?可以画下对应的索引树结构图~

select * from Temployee where age=32;

其实这个,这个大家可以先画出idx_age普通索引的索引结构图,大概如下:

再画出id主键索引,我们先画出聚族索引结构图,如下:

image.png

这条 SQL 查询语句执行大概流程是这样的:

  • 搜索idx_age 索引树,将磁盘块1加载到内存,由于32<43,搜索左路分支,到磁盘寻址磁盘块2
  • 磁盘块2加载到内存中,由于32<36,搜索左路分支,到磁盘寻址磁盘块4
  • 磁盘块4加载到内存中,在内存继续遍历,找到age=32的记录,取得id = 400.
  • 拿到id=400后,回到id主键索引树
  • 搜索id主键索引树,将磁盘块1加载到内存,因为300<400<500,所以在选择中间分支,到磁盘寻址磁盘块3
  • 虽然在磁盘块3,找到了id=400,但是它不是叶子节点,所以会继续往下找。到磁盘寻址磁盘块8
  • 磁盘块8加载内存,在内存遍历,找到id=400的记录,拿到R4这一行的数据,好的,大功告成。

7. 什么是回表?如何减少回表?

当查询的数据在索引树中,找不到的时候,需要回到主键索引树 中去获取,这个过程叫做回表

比如在第6 小节中,使用的查询SQL

select * from Temployee where age=32;

需要查询所有列的数据,idx_age普通索引不能满足,需要拿到主键id的值后,再回到id主键索引查找获取,这个过程就是回表。

8. 什么是覆盖索引?

如果我们查询SQL的select * 修改为 select id, age的话,其实是不需要回表 的。因为idage的值,都在idx_age索引树的叶子节点上,这就涉及到覆盖索引的知识点了。

覆盖索引是select的数据列只用从索引中就能够取得,不必回表,换句话说,查询列要被所建的索引覆盖。

9. 聊聊索引的最左前缀原则

索引的最左前缀原则,可以是联合索引的最左N个字段 。比如你建立一个组合索引(a,b,c),其实可以相当于建了(a),(a,b),(a,b,c)三个索引,大大提高了索引复用能力。

当然,最左前缀也可以是字符串索引的最左M个字符。 。比如,你的普通索引树是酱紫:

这个SQL: select * from employee where name like '小%' order by age desc; 也是命中索引的。

10. 索引下推了解过吗?什么是索引下推

给你这个SQL:

select * from employee where name like '小%' and age=28 and sex='0';

其中,nameage为联合索引(idx_name_age)。

如果是Mysql5.6之前 ,在idx_name_age索引树,找出所有名字第一个字是“小”的人,拿到它们的主键id,然后回表找出数据行,再去对比年龄和性别等其他字段。如图:

有些朋友可能觉得奇怪,idx_name_age(name,age)不是联合索引嘛?为什么选出包含“小”字后,不再顺便看下年龄age再回表呢,不是更高效嘛?所以呀,MySQL 5.6就引入了索引下推优化 ,可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

因此,MySQL5.6版本之后,选出包含“小”字后,顺表过滤age=28

11. 大表如何添加索引

如果一张表数据量级是千万级别以上的,那么,如何给这张表添加索引?

我们需要知道一点,给表添加索引的时候是会对表加锁的 。如果不谨慎操作,有可能出现生产事故的。可以参考以下方法:

  1. 先创建一张跟原表A数据结构相同的新表B
  2. 在新表B添加需要加上的新索引。
  3. 把原表A数据导到新表B
  4. rename新表B为原表的表名A,原表A换别的表名;

12. 如何知道语句是否走索引查询?

explain查看SQL的执行计划,这样就知道是否命中索引了

explainSQL一起使用时,MySQL将显示来自优化器的有关语句执行计划的信息。

一般来说,我们需要重点关注type、rows、filtered、extra、key

1.2.1 type

type表示连接类型 ,查看索引执行情况的一个重要指标。以下性能从好到坏依次:system > const > eq_ref > ref > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL

  • system:这种类型要求数据库表中只有一条数据,是const类型的一个特例,一般情况下是不会出现的。
  • const:通过一次索引就能找到数据,一般用于主键或唯一索引作为条件,这类扫描效率极高,,速度非常快。
  • eq_ref:常用于主键或唯一索引扫描,一般指使用主键的关联查询
  • ref : 常用于非主键和唯一索引扫描。
  • ref_or_null:这种连接类型类似于ref,区别在于MySQL会额外搜索包含NULL值的行
  • index_merge:使用了索引合并优化方法,查询使用了两个以上的索引。
  • unique_subquery:类似于eq_ref,条件用了in子查询
  • index_subquery:区别于unique_subquery,用于非唯一索引,可以返回重复值。
  • range:常用于范围查询,比如:between ... and 或 In 等操作
  • index:全索引扫描
  • ALL:全表扫描

1.2.2 rows

该列表示MySQL估算要找到我们所需的记录,需要读取的行数。对于InnoDB表,此数字是估计值,并非一定是个准确值。

1.2.3 filtered

该列是一个百分比的值,表里符合条件的记录数的百分比。简单点说,这个字段表示存储引擎返回的数据在经过过滤后,剩下满足条件的记录数量的比例。

1.2.4 extra

该字段包含有关MySQL如何解析查询的其他信息,它一般会出现这几个值:

  • Using filesort:表示按文件排序,一般是在指定的排序和索引排序不一致的情况才会出现。一般见于order by语句
  • Using index :表示是否用了覆盖索引。
  • Using temporary: 表示是否使用了临时表,性能特别差,需要重点优化。一般多见于group by语句,或者union语句。
  • Using where : 表示使用了where条件过滤.
  • Using index condition:MySQL5.6之后新增的索引下推。在存储引擎层进行数据过滤,而不是在服务层过滤,利用索引现有的数据减少回表的数据。
1.2.5 key

该列表示实际用到的索引 。一般配合possible_keys列一起看。

13. Hash 索引和 B+ 树区别是什么?你在设计索引是怎么抉择的?

  • B+树可以进行范围查询,Hash 索引不能。
  • B+树支持联合索引的最左侧原则,Hash 索引不支持。
  • B+树支持 order by 排序,Hash 索引不支持。
  • Hash 索引在等值查询上比 B+树效率更高。(但是索引列的重复值很多的话,Hash冲突,效率降低)。
  • B+树使用 like 进行模糊查询的时候,like 后面(比如%开头)的话可以起到优化的作用,Hash 索引根本无法进行模糊查询。

14. 索引有哪些优缺点?

优点:

  • 索引可以加快数据查询速度,减少查询时间
  • 唯一索引可以保证数据库表中每一行的数据的唯一性

缺点:

  • 创建索引和维护索引要耗费时间
  • 索引需要占物理空间,除了数据表占用数据空间之外,每一个索引还要占用一定的物理空间
  • 以表中的数据进行增、删、改的时候,索引也要动态的维护。

15. 聚簇索引与非聚簇索引的区别

聚簇索引并不是一种单独的索引类型,而是一种数据存储方式 。它表示索引结构和数据一起存放的索引。非聚集索引是索引结构和数据分开存放的索引

接下来,我们分不同存存储引擎去聊哈~

MySQLInnoDB存储引擎中, 聚簇索引与非聚簇索引最大的区别,在于叶节点是否存放一整行记录。聚簇索引叶子节点存储了一整行记录,而非聚簇索引叶子节点存储的是主键信息,因此,一般非聚簇索引还需要回表查询。

  • 一个表中只能拥有一个聚集索引(因为一般聚簇索引就是主键索引 ),而非聚集索引一个表则可以存在多个。
  • 一般来说,相对于非聚簇索引,聚簇索引查询效率更高,因为不用回表。

而在MyISM存储引擎中,它的主键索引,普通索引都是非聚簇索引,因为数据和索引是分开的,叶子节点都使用一个地址指向真正的表数据



相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
350 9
|
4天前
|
缓存 算法 关系型数据库
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
MySQL底层概述—8.JOIN排序索引优化
|
7天前
|
SQL 存储 关系型数据库
MySQL原理简介—9.MySQL索引原理
本文详细介绍了MySQL索引的设计与使用原则,涵盖磁盘数据页的存储结构、页分裂机制、主键索引设计及查询过程、聚簇索引和二级索引的原理、B+树索引的维护、联合索引的使用规则、SQL排序和分组时如何利用索引、回表查询对性能的影响以及索引覆盖的概念。此外还讨论了索引设计的案例,包括如何处理where筛选和order by排序之间的冲突、低基数字段的处理方式、范围查询字段的位置安排,以及通过辅助索引来优化特定查询场景。总结了设计索引的原则,如尽量包含where、order by、group by中的字段,选择离散度高的字段作为索引,限制索引数量,并针对频繁查询的低基数字段进行特殊处理等。
MySQL原理简介—9.MySQL索引原理
|
5天前
|
存储 关系型数据库 MySQL
MySQL底层概述—6.索引原理
本文详细回顾了:索引原理、二叉查找树、平衡二叉树(AVL树)、红黑树、B-Tree、B+Tree、Hash索引、聚簇索引与非聚簇索引。
MySQL底层概述—6.索引原理
|
1月前
|
SQL 存储 关系型数据库
MySQL秘籍之索引与查询优化实战指南
最左前缀原则。不冗余原则。最大选择性原则。所谓前缀索引,说白了就是对文本的前几个字符建立索引(具体是几个字符在建立索引时去指定),比如以产品名称的前 10 位来建索引,这样建立起来的索引更小,查询效率更快!
115 22
 MySQL秘籍之索引与查询优化实战指南
|
25天前
|
存储 关系型数据库 MySQL
MySQL索引学习笔记
本文深入探讨了MySQL数据库中慢查询分析的关键概念和技术手段。
100 13
|
28天前
|
存储 关系型数据库 MySQL
浅入浅出——MySQL索引
本文介绍了数据库索引的概念和各种索引结构,如哈希表、B+树、InnoDB引擎的索引运作原理等。还分享了覆盖索引、联合索引、最左前缀原则等优化技巧,以及如何避免索引误用,提高数据库性能。
|
1月前
|
存储 关系型数据库 MySQL
MySQL中为什么要使用索引合并(Index Merge)?
通过这些内容的详细介绍和实际案例分析,希望能帮助您深入理解索引合并及其在MySQL中的
131 10
|
2月前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
78 8
|
2月前
|
存储 关系型数据库 MySQL
【MYSQL】 ——索引(B树B+树)、设计栈
索引的特点,使用场景,操作,底层结构,B树B+树,MYSQL设计栈

推荐镜像

更多