Nginx 一网打尽:动静分离、压缩、缓存、黑白名单、跨域、高可用、性能优化...

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: Nginx 一网打尽:动静分离、压缩、缓存、黑白名单、跨域、高可用、性能优化...


引言

早期的业务都是基于单体节点部署,由于前期访问流量不大,因此单体结构也可满足需求,但随着业务增长,流量也越来越大,那么最终单台服务器受到的访问压力也会逐步增高。时间一长,单台服务器性能无法跟上业务增长,就会造成线上频繁宕机的现象发生,最终导致系统瘫痪无法继续处理用户的请求。

从上面的描述中,主要存在两个问题:①单体结构的部署方式无法承载日益增长的业务流量。②当后端节点宕机后,整个系统会陷入瘫痪,导致整个项目不可用。

因此在这种背景下,引入负载均衡技术可带来的收益:

  • 系统的高可用:当某个节点宕机后可以迅速将流量转移至其他节点。
  • 系统的高性能:多台服务器共同对外提供服务,为整个系统提供了更高规模的吞吐。
  • 系统的拓展性:当业务再次出现增长或萎靡时,可再加入/减少节点,灵活伸缩。

OK~,既然引入负载均衡技术可给我们带来如此巨大的好处,那么又有那些方案可供选择呢?主要有两种负载方案,「硬件层面与软件层面」 ,比较常用的硬件负载器有A10、F5等,但这些机器动辄大几万乃至几十万的成本,因此一般大型企业会采用该方案,如银行、国企、央企等。而成本有限,但依旧想做负载均衡的项目,那么可在软件层面实现,如典型的Nginx等,软件层的负载也是本文的重点,毕竟Boss们的准则之一就是:「能靠技术实现的就尽量不花钱。」

当然,如果你认为本文对你而言有帮助,记得点赞、收藏、关注三连噢!

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

一、性能怪兽-Nginx概念深入浅出

Nginx是目前负载均衡技术中的主流方案,几乎绝大部分项目都会使用它,Nginx是一个轻量级的高性能HTTP反向代理服务器,同时它也是一个通用类型的代理服务器,支持绝大部分协议,如TCP、UDP、SMTP、HTTPS等。Nginx与Redis相同,都是基于多路复用模型构建出的产物,因此它与Redis同样具备「资源占用少、并发支持高」 的特点,在理论上单节点的Nginx同时支持5W并发连接,而实际生产环境中,硬件基础到位再结合简单调优后确实能达到该数值。

先来看看Nginx引入前后,客户端请求处理流程的对比:

原本客户端是直接请求目标服务器,由目标服务器直接完成请求处理工作,但加入Nginx后,所有的请求会先经过Nginx,再由其进行分发到具体的服务器处理,处理完成后再返回Nginx,最后由Nginx将最终的响应结果返回给客户端。

了解了Nginx的基本概念后,再来快速搭建一下环境,以及了解一些Nginx的高级特性,如动静分离、资源压缩、缓存配置、IP黑名单、高可用保障等。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

二、Nginx环境搭建

❶首先创建Nginx的目录并进入:

[root@localhost]# mkdir /soft && mkdir /soft/nginx/
[root@localhost]# cd /soft/nginx/

❷下载Nginx的安装包,可以通过FTP工具上传离线环境包,也可通过wget命令在线获取安装包:

[root@localhost]# wget https://nginx.org/download/nginx-1.21.6.tar.gz

没有wget命令的可通过yum命令安装:

[root@localhost]# yum -y install wget

❸解压Nginx的压缩包:

[root@localhost]# tar -xvzf nginx-1.21.6.tar.gz

❹下载并安装Nginx所需的依赖库和包:

[root@localhost]# yum install --downloadonly --downloaddir=/soft/nginx/ gcc-c++
[root@localhost]# yum install --downloadonly --downloaddir=/soft/nginx/ pcre pcre-devel4
[root@localhost]# yum install --downloadonly --downloaddir=/soft/nginx/ zlib zlib-devel
[root@localhost]# yum install --downloadonly --downloaddir=/soft/nginx/ openssl openssl-devel

也可以通过yum命令一键下载(推荐上面哪种方式):

[root@localhost]# yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel

执行完成后,然后ls查看目录文件,会看一大堆依赖:

紧接着通过rpm命令依次将依赖包一个个构建,或者通过如下指令一键安装所有依赖包:

[root@localhost]# rpm -ivh --nodeps *.rpm

❺进入解压后的nginx目录,然后执行Nginx的配置脚本,为后续的安装提前配置好环境,默认位于/usr/local/nginx/目录下(可自定义目录):

[root@localhost]# cd nginx-1.21.6
[root@localhost]# ./configure --prefix=/soft/nginx/

❻编译并安装Nginx

[root@localhost]# make && make instal

❼最后回到前面的/soft/nginx/目录,输入ls即可看见安装nginx完成后生成的文件。

❽修改安装后生成的conf目录下的nginx.conf配置文件:

[root@localhost]# vi conf/nginx.conf
    修改端口号:listen    80;
 修改IP地址:server_name  你当前机器的本地IP(线上配置域名);

❾制定配置文件并启动Nginx

[root@localhost]# sbin/nginx -c conf/nginx.conf
[root@localhost]# ps aux | grep nginx

Nginx其他操作命令:

sbin/nginx -t -c conf/nginx.conf # 检测配置文件是否正常
sbin/nginx -s reload -c conf/nginx.conf # 修改配置后平滑重启
sbin/nginx -s quit # 优雅关闭Nginx,会在执行完当前的任务后再退出
sbin/nginx -s stop # 强制终止Nginx,不管当前是否有任务在执行

❿开放80端口,并更新防火墙:

[root@localhost]# firewall-cmd --zone=public --add-port=80/tcp --permanent
[root@localhost]# firewall-cmd --reload
[root@localhost]# firewall-cmd --zone=public --list-ports

⓫在Windows/Mac的浏览器中,直接输入刚刚配置的IP地址访问Nginx

最终看到如上的Nginx欢迎界面,代表Nginx安装完成。

三、Nginx反向代理-负载均衡

首先通过SpringBoot+Freemarker快速搭建一个WEB项目:springboot-web-nginx,然后在该项目中,创建一个IndexNginxController.java文件,逻辑如下:

@Controller
public class IndexNginxController {
    @Value("${server.port}")
    private String port;
    @RequestMapping("/")
    public ModelAndView index(){
        ModelAndView model = new ModelAndView();
        model.addObject("port", port);
        model.setViewName("index");
        return model;
    }
}

在该Controller类中,存在一个成员变量:port,它的值即是从application.properties配置文件中获取server.port值。当出现访问/资源的请求时,跳转前端index页面,并将该值携带返回。

前端的index.ftl文件代码如下:

<html>
    <head>
        <title>Nginx演示页面</title>
        <link href="nginx_style.css" rel="stylesheet" type="text/css"/>
    </head>
    <body>
        <div style="border: 2px solid red;margin: auto;width: 800px;text-align: center">
            <div  id="nginx_title">
                <h1>欢迎来到熊猫高级会所,我是竹子${port}号!</h1>
            </div>
        </div>
    </body>
</html>

从上可以看出其逻辑并不复杂,仅是从响应中获取了port输出。

OK~,前提工作准备就绪后,再简单修改一下nginx.conf的配置即可:

upstream nginx_boot{
   # 30s内检查心跳发送两次包,未回复就代表该机器宕机,请求分发权重比为1:2
   server 192.168.0.000:8080 weight=100 max_fails=2 fail_timeout=30s; 
   server 192.168.0.000:8090 weight=200 max_fails=2 fail_timeout=30s;
   # 这里的IP请配置成你WEB服务所在的机器IP
}
server {
    location / {
        root   html;
        # 配置一下index的地址,最后加上index.ftl。
        index  index.html index.htm index.jsp index.ftl;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        # 请求交给名为nginx_boot的upstream上
        proxy_pass http://nginx_boot;
    }
}

至此,所有的前提工作准备就绪,紧接着再启动Nginx,然后再启动两个web服务,第一个WEB服务启动时,在application.properties配置文件中,将端口号改为8080,第二个WEB服务启动时,将其端口号改为8090

最终来看看效果:

负载均衡效果-动图演示

因为配置了请求分发的权重,8080、8090的权重比为2:1,因此请求会根据权重比均摊到每台机器,也就是8080一次、8090两次、8080一次......

Nginx请求分发原理

客户端发出的请求192.168.12.129最终会转变为:http://192.168.12.129:80/,然后再向目标IP发起请求,流程如下:

请求分发原理

  • 由于Nginx监听了192.168.12.12980端口,所以最终该请求会找到Nginx进程;
  • Nginx首先会根据配置的location规则进行匹配,根据客户端的请求路径/,会定位到location /{}规则;
  • 然后根据该location中配置的proxy_pass会再找到名为nginx_bootupstream
  • 最后根据upstream中的配置信息,将请求转发到运行WEB服务的机器处理,由于配置了多个WEB服务,且配置了权重值,因此Nginx会依次根据权重比分发请求。

四、Nginx动静分离

动静分离应该是听的次数较多的性能优化方案,那先思考一个问题:「为什么需要做动静分离呢?它带来的好处是什么?」 其实这个问题也并不难回答,当你搞懂了网站的本质后,自然就理解了动静分离的重要性。先来以淘宝为例分析看看:

淘宝首页

当浏览器输入www.taobao.com访问淘宝首页时,打开开发者调试工具可以很明显的看到,首页加载会出现100+的请求数,而正常项目开发时,静态资源一般会放入到resources/static/目录下:

IDEA 工程结构

在项目上线部署时,这些静态资源会一起打成包,那此时思考一个问题:「假设淘宝也是这样干的,那么首页加载时的请求最终会去到哪儿被处理?」 答案毋庸置疑,首页100+的所有请求都会来到部署WEB服务的机器处理,那则代表着一个客户端请求淘宝首页,就会对后端服务器造成100+的并发请求。毫无疑问,这对于后端服务器的压力是尤为巨大的。

但此时不妨分析看看,首页100+的请求中,是不是至少有60+是属于*.js、*.css、*.html、*.jpg.....这类静态资源的请求呢?答案是Yes

既然有这么多请求属于静态的,这些资源大概率情况下,长时间也不会出现变动,那为何还要让这些请求到后端再处理呢?能不能在此之前就提前处理掉?当然OK,因此经过分析之后能够明确一点:「做了动静分离之后,至少能够让后端服务减少一半以上的并发量。」 到此时大家应该明白了动静分离能够带来的性能收益究竟有多大。


OK~,搞清楚动静分离的必要性之后,如何实现动静分离呢?其实非常简单,实战看看。

①先在部署Nginx的机器,Nginx目录下创建一个目录static_resources

mkdir static_resources

②将项目中所有的静态资源全部拷贝到该目录下,而后将项目中的静态资源移除重新打包。

③稍微修改一下nginx.conf的配置,增加一条location匹配规则:

location ~ .*\.(html|htm|gif|jpg|jpeg|bmp|png|ico|txt|js|css){
    root   /soft/nginx/static_resources;
    expires 7d;
}

然后照常启动nginx和移除了静态资源的WEB服务,你会发现原本的样式、js效果、图片等依旧有效,如下:

其中static目录下的nginx_style.css文件已被移除,但效果依旧存在(绿色字体+蓝色大边框):

移除后效果动图

最后解读一下那条location规则:location ~ .*\.(html|htm|gif|jpg|jpeg|bmp|png|ico|txt|js|css)~代表匹配时区分大小写.*代表任意字符都可以出现零次或多次,即资源名不限制\.代表匹配后缀分隔符.(html|...|css)代表匹配括号里所有静态资源类型 综上所述,简单一句话概述:「该配置表示匹配以.html~.css为后缀的所有资源请求。」

最后提一嘴,也可以将静态资源上传到文件服务器中,然后location中配置一个新的upstream指向。

五、Nginx资源压缩

建立在动静分离的基础之上,如果一个静态资源的Size越小,那么自然传输速度会更快,同时也会更节省带宽,因此我们在部署项目时,也可以通过Nginx对于静态资源实现压缩传输,一方面可以节省带宽资源,第二方面也可以加快响应速度并提升系统整体吞吐。

Nginx也提供了三个支持资源压缩的模块ngx_http_gzip_module、ngx_http_gzip_static_module、ngx_http_gunzip_module,其中ngx_http_gzip_module属于内置模块,代表着可以直接使用该模块下的一些压缩指令,后续的资源压缩操作都基于该模块,先来看看压缩配置的一些参数/指令:

参数项 释义 参数值
gzip 开启或关闭压缩机制 on/off;
gzip_types 根据文件类型选择性开启压缩机制 image/png、text/css...
gzip_comp_level 用于设置压缩级别,级别越高越耗时 1~9(越高压缩效果越好)
gzip_vary 设置是否携带Vary:Accept-Encoding头域的响应头部 on/off;
gzip_buffers 设置处理压缩请求的缓冲区数量和大小 数量 大小,如16 8k;
gzip_disable 针对不同客户端的请求来设置是否开启压缩 .*Chrome.*;
gzip_http_version 指定压缩响应所需要的最低HTTP请求版本 1.1;
gzip_min_length 设置触发压缩的文件最低大小 512k;
gzip_proxied 对于后端服务器的响应结果是否开启压缩 off、expired、no-cache...

了解了Nginx中的基本压缩配置后,接下来可以在Nginx中简单配置一下:

http{
    # 开启压缩机制
    gzip on;
    # 指定会被压缩的文件类型(也可自己配置其他类型)
    gzip_types text/plain application/javascript text/css application/xml text/javascript image/jpeg image/gif image/png;
    # 设置压缩级别,越高资源消耗越大,但压缩效果越好
    gzip_comp_level 5;
    # 在头部中添加Vary: Accept-Encoding(建议开启)
    gzip_vary on;
    # 处理压缩请求的缓冲区数量和大小
    gzip_buffers 16 8k;
    # 对于不支持压缩功能的客户端请求不开启压缩机制
    gzip_disable "MSIE [1-6]\."; # 低版本的IE浏览器不支持压缩
    # 设置压缩响应所支持的HTTP最低版本
    gzip_http_version 1.1;
    # 设置触发压缩的最小阈值
    gzip_min_length 2k;
    # 关闭对后端服务器的响应结果进行压缩
    gzip_proxied off;
}

在上述的压缩配置中,最后一个gzip_proxied选项,可以根据系统的实际情况决定,总共存在多种选项:

  • off:关闭Nginx对后台服务器的响应结果进行压缩。
  • expired:如果响应头中包含Expires信息,则开启压缩。
  • no-cache:如果响应头中包含Cache-Control:no-cache信息,则开启压缩。
  • no-store:如果响应头中包含Cache-Control:no-store信息,则开启压缩。
  • private:如果响应头中包含Cache-Control:private信息,则开启压缩。
  • no_last_modified:如果响应头中不包含Last-Modified信息,则开启压缩。
  • no_etag:如果响应头中不包含ETag信息,则开启压缩。
  • auth:如果响应头中包含Authorization信息,则开启压缩。
  • any:无条件对后端的响应结果开启压缩机制。

OK~,简单修改好了Nginx的压缩配置后,可以在原本的index页面中引入一个jquery-3.6.0.js文件:

<script type="text/javascript" src="jquery-3.6.0.js"></script>

分别来对比下压缩前后的区别:

从图中可以很明显看出,未开启压缩机制前访问时,js文件的原始大小为230K,当配置好压缩后再重启Nginx,会发现文件大小从230KB→69KB,效果立竿见影!

注意点:①对于图片、视频类型的数据,会默认开启压缩机制,因此一般无需再次开启压缩。②对于.js文件而言,需要指定压缩类型为application/javascript,而并非text/javascript、application/x-javascript

六、Nginx缓冲区

先来思考一个问题,接入Nginx的项目一般请求流程为:“客户端→Nginx→服务端”,在这个过程中存在两个连接:“客户端→NginxNginx→服务端”,那么两个不同的连接速度不一致,就会影响用户的体验(比如浏览器的加载速度跟不上服务端的响应速度)。其实也就类似电脑的内存跟不上CPU速度,所以对于用户造成的体验感极差,因此在CPU设计时都会加入三级高速缓冲区,用于缓解CPU和内存速率不一致的矛盾。在Nginx也同样存在缓冲区的机制,主要目的就在于:「用来解决两个连接之间速度不匹配造成的问题」 ,有了缓冲后,Nginx代理可暂存后端的响应,然后按需供给数据给客户端。先来看看一些关于缓冲区的配置项:

  • proxy_buffering:是否启用缓冲机制,默认为on关闭状态。
  • client_body_buffer_size:设置缓冲客户端请求数据的内存大小。
  • proxy_buffers:为每个请求/连接设置缓冲区的数量和大小,默认4 4k/8k
  • proxy_buffer_size:设置用于存储响应头的缓冲区大小。
  • proxy_busy_buffers_size:在后端数据没有完全接收完成时,Nginx可以将busy状态的缓冲返回给客户端,该参数用来设置busy状态的buffer具体有多大,默认为proxy_buffer_size*2
  • proxy_temp_path:当内存缓冲区存满时,可以将数据临时存放到磁盘,该参数是设置存储缓冲数据的目录。
  • path是临时目录的路径。
  • 语法:proxy_temp_path path;
  • proxy_temp_file_write_size:设置每次写数据到临时文件的大小限制。
  • proxy_max_temp_file_size:设置临时的缓冲目录中允许存储的最大容量。
  • 非缓冲参数项:
  • proxy_connect_timeout:设置与后端服务器建立连接时的超时时间。
  • proxy_read_timeout:设置从后端服务器读取响应数据的超时时间。
  • proxy_send_timeout:设置向后端服务器传输请求数据的超时时间。

具体的nginx.conf配置如下:

http{
    proxy_connect_timeout 10;
    proxy_read_timeout 120;
    proxy_send_timeout 10;
    proxy_buffering on;
    client_body_buffer_size 512k;
    proxy_buffers 4 64k;
    proxy_buffer_size 16k;
    proxy_busy_buffers_size 128k;
    proxy_temp_file_write_size 128k;
    proxy_temp_path /soft/nginx/temp_buffer;
}

上述的缓冲区参数,是基于每个请求分配的空间,而并不是所有请求的共享空间。当然,具体的参数值还需要根据业务去决定,要综合考虑机器的内存以及每个请求的平均数据大小。

最后提一嘴:使用缓冲也可以减少即时传输带来的带宽消耗。

七、Nginx缓存机制

对于性能优化而言,缓存是一种能够大幅度提升性能的方案,因此几乎可以在各处都能看见缓存,如客户端缓存、代理缓存、服务器缓存等等,Nginx的缓存则属于代理缓存的一种。对于整个系统而言,加入缓存带来的优势额外明显:

  • 减少了再次向后端或文件服务器请求资源的带宽消耗。
  • 降低了下游服务器的访问压力,提升系统整体吞吐。
  • 缩短了响应时间,提升了加载速度,打开页面的速度更快。

那么在Nginx中,又该如何配置代理缓存呢?先来看看缓存相关的配置项:

  • proxy_cache_path:代理缓存的路径。
  • path:缓存的路径地址。
  • levels:缓存存储的层次结构,最多允许三层目录。
  • use_temp_path:是否使用临时目录。
  • keys_zone:指定一个共享内存空间来存储热点Key(1M可存储8000Key)。
  • inactive:设置缓存多长时间未被访问后删除(默认是十分钟)。
  • max_size:允许缓存的最大存储空间,超出后会基于LRU算法移除缓存,Nginx会创建一个Cache manager的进程移除数据,也可以通过purge方式。
  • manager_filesmanager进程每次移除缓存文件数量的上限。
  • manager_sleepmanager进程每次移除缓存文件的时间上限。
  • manager_thresholdmanager进程每次移除缓存后的间隔时间。
  • loader_files:重启Nginx载入缓存时,每次加载的个数,默认100
  • loader_sleep:每次载入时,允许的最大时间上限,默认200ms
  • loader_threshold:一次载入后,停顿的时间间隔,默认50ms
  • purger:是否开启purge方式移除数据。
  • purger_files:每次移除缓存文件时的数量。
  • purger_sleep:每次移除时,允许消耗的最大时间。
  • purger_threshold:每次移除完成后,停顿的间隔时间。
  • 语法:proxy_cache_path path [levels=levels] [use_temp_path=on|off] keys_zone=name:size [inactive=time] [max_size=size] [manager_files=number] [manager_sleep=time] [manager_threshold=time] [loader_files=number] [loader_sleep=time] [loader_threshold=time] [purger=on|off] [purger_files=number] [purger_sleep=time] [purger_threshold=time];
  • 是的,你没有看错,就是这么长....,解释一下每个参数项的含义:
  • proxy_cache:开启或关闭代理缓存,开启时需要指定一个共享内存区域。
  • zone为内存区域的名称,即上面中keys_zone设置的名称。
  • 语法:proxy_cache zone | off;
  • proxy_cache_key:定义如何生成缓存的键。
  • string为生成Key的规则,如$scheme$proxy_host$request_uri
  • 语法:proxy_cache_key string;
  • proxy_cache_valid:缓存生效的状态码与过期时间。
  • code为状态码,time为有效时间,可以根据状态码设置不同的缓存时间。
  • 例如:proxy_cache_valid 200 302 30m;
  • 语法:proxy_cache_valid [code ...] time;
  • proxy_cache_min_uses:设置资源被请求多少次后被缓存。
  • number为次数,默认为1
  • 语法:proxy_cache_min_uses number;
  • proxy_cache_use_stale:当后端出现异常时,是否允许Nginx返回缓存作为响应。
  • error为错误类型,可配置timeout|invalid_header|updating|http_500...
  • 语法:proxy_cache_use_stale error;
  • proxy_cache_lock:对于相同的请求,是否开启锁机制,只允许一个请求发往后端。
  • 语法:proxy_cache_lock on | off;
  • proxy_cache_lock_timeout:配置锁超时机制,超出规定时间后会释放请求。
  • proxy_cache_lock_timeout time;
  • proxy_cache_methods:设置对于那些HTTP方法开启缓存。
  • method为请求方法类型,如GET、HEAD等。
  • 语法:proxy_cache_methods method;
  • proxy_no_cache:定义不存储缓存的条件,符合时不会保存。
  • string为条件,例如$cookie_nocache $arg_nocache $arg_comment;
  • 语法:proxy_no_cache string...;
  • proxy_cache_bypass:定义不读取缓存的条件,符合时不会从缓存中读取。
  • 和上面proxy_no_cache的配置方法类似。
  • 语法:proxy_cache_bypass string...;
  • add_header:往响应头中添加字段信息。
  • 语法:add_header fieldName fieldValue;
  • $upstream_cache_status:记录了缓存是否命中的信息,存在多种情况:
  • MISS:请求未命中缓存。
  • HIT:请求命中缓存。
  • EXPIRED:请求命中缓存但缓存已过期。
  • STALE:请求命中了陈旧缓存。
  • REVALIDDATEDNginx验证陈旧缓存依然有效。
  • UPDATING:命中的缓存内容陈旧,但正在更新缓存。
  • BYPASS:响应结果是从原始服务器获取的。
  • PS:这个和之前的不同,之前的都是参数项,这个是一个Nginx内置变量。

OK~,对于Nginx中的缓存配置项大概了解后,接着来配置一下Nginx代理缓存:

http{
    # 设置缓存的目录,并且内存中缓存区名为hot_cache,大小为128m,
    # 三天未被访问过的缓存自动清楚,磁盘中缓存的最大容量为2GB。
    proxy_cache_path /soft/nginx/cache levels=1:2 keys_zone=hot_cache:128m inactive=3d max_size=2g;
    server{
        location / {
            # 使用名为nginx_cache的缓存空间
            proxy_cache hot_cache;
            # 对于200、206、304、301、302状态码的数据缓存1天
            proxy_cache_valid 200 206 304 301 302 1d;
            # 对于其他状态的数据缓存30分钟
            proxy_cache_valid any 30m;
            # 定义生成缓存键的规则(请求的url+参数作为key)
            proxy_cache_key $host$uri$is_args$args;
            # 资源至少被重复访问三次后再加入缓存
            proxy_cache_min_uses 3;
            # 出现重复请求时,只让一个去后端读数据,其他的从缓存中读取
            proxy_cache_lock on;
            # 上面的锁超时时间为3s,超过3s未获取数据,其他请求直接去后端
            proxy_cache_lock_timeout 3s;
            # 对于请求参数或cookie中声明了不缓存的数据,不再加入缓存
            proxy_no_cache $cookie_nocache $arg_nocache $arg_comment;
            # 在响应头中添加一个缓存是否命中的状态(便于调试)
            add_header Cache-status $upstream_cache_status;
        }
    }
}

接着来看一下效果,如下:

第一次访问时,因为还没有请求过资源,所以缓存中没有数据,因此没有命中缓存。第二、三次,依旧没有命中缓存,直至第四次时才显示命中,这是为什么呢?因为在前面的缓存配置中,我们配置了加入缓存的最低条件为:「资源至少要被请求三次以上才会加入缓存。」 这样可以避免很多无效缓存占用空间。

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6月前
|
应用服务中间件 nginx
Nginx Location 深入剖析及动静分离简易配置
Nginx Location 深入剖析及动静分离简易配置
83 3
|
5月前
|
Java 应用服务中间件 Shell
Nginx+Keepalived+Tomcat 实现Web高可用集群
Nginx+Keepalived+Tomcat 实现Web高可用集群
150 0
|
3月前
|
缓存 前端开发 应用服务中间件
CORS跨域+Nginx配置、Apache配置
CORS跨域+Nginx配置、Apache配置
272 7
|
5月前
|
监控 网络协议 应用服务中间件
高并发下Nginx压缩
【8月更文挑战第16天】gzip压缩在Nginx中可减少传输数据量,加快响应速度但消耗CPU。可在http、server及location级别配置。高并发时,启用Nginx状态监控以检查性能,配置`nginx.conf`添加`location /NginxStatus { stub_status on; access_log off; }`并重启Nginx
61 12
|
5月前
|
运维 负载均衡 监控
Nginx加Keepalived实现高可用
使用Nginx和Keepalived来实现高可用性的方案,对于确保关键服务的稳定性和可靠性来说是非常有效的。此配置涉及多个步骤,包括各个服务的安装、设置及测试,目标是在主服务器故障时能无缝切换,以确保服务的持续可用。正确的配置和充分的测试是实现高可用性的保证,这也要求管理员对这些工具和它们背后的原理有深入的了解。
99 1
|
5月前
|
缓存 安全 应用服务中间件
Nginx:关于实现跨域代理
Nginx:关于实现跨域代理
870 1
|
5月前
|
运维 算法 应用服务中间件
运维系列.Nginx中使用HTTP压缩功能(一)
运维系列.Nginx中使用HTTP压缩功能(一)
98 1
|
5月前
|
应用服务中间件 nginx
nginx配置gzip压缩
nginx配置gzip压缩
|
6月前
|
存储 缓存 前端开发
(三)Nginx一网打尽:动静分离、压缩、缓存、黑白名单、跨域、高可用、性能优化...想要的这都有!
早期的业务都是基于单体节点部署,由于前期访问流量不大,因此单体结构也可满足需求,但随着业务增长,流量也越来越大,那么最终单台服务器受到的访问压力也会逐步增高。时间一长,单台服务器性能无法跟上业务增长,就会造成线上频繁宕机的现象发生,最终导致系统瘫痪无法继续处理用户的请求。
187 1
|
5月前
|
缓存 应用服务中间件 nginx
运维系列.Nginx中使用HTTP压缩功能(二)
运维系列.Nginx中使用HTTP压缩功能(二)
64 0