- 引言
- 一、性能怪兽-Nginx概念深入浅出
- 二、Nginx环境搭建
- 三、Nginx反向代理-负载均衡
- 四、Nginx动静分离
- 五、Nginx资源压缩
- 六、Nginx缓冲区
- 七、Nginx缓存机制
- 八、Nginx实现IP黑白名单
- 九、Nginx跨域配置
- 十、Nginx防盗链设计
- 十一、Nginx大文件传输配置
- 十二、Nginx配置SLL证书
- 十三、Nginx的高可用
- 十四、Nginx性能优化
- 十五、放在最后的结尾
引言
早期的业务都是基于单体节点部署,由于前期访问流量不大,因此单体结构也可满足需求,但随着业务增长,流量也越来越大,那么最终单台服务器受到的访问压力也会逐步增高。时间一长,单台服务器性能无法跟上业务增长,就会造成线上频繁宕机的现象发生,最终导致系统瘫痪无法继续处理用户的请求。
❝
从上面的描述中,主要存在两个问题:①单体结构的部署方式无法承载日益增长的业务流量。②当后端节点宕机后,整个系统会陷入瘫痪,导致整个项目不可用。
❞
因此在这种背景下,引入负载均衡技术可带来的收益:
- 系统的高可用:当某个节点宕机后可以迅速将流量转移至其他节点。
- 系统的高性能:多台服务器共同对外提供服务,为整个系统提供了更高规模的吞吐。
- 系统的拓展性:当业务再次出现增长或萎靡时,可再加入/减少节点,灵活伸缩。
OK~,既然引入负载均衡技术可给我们带来如此巨大的好处,那么又有那些方案可供选择呢?主要有两种负载方案,「硬件层面与软件层面」 ,比较常用的硬件负载器有A10、F5
等,但这些机器动辄大几万乃至几十万的成本,因此一般大型企业会采用该方案,如银行、国企、央企等。而成本有限,但依旧想做负载均衡的项目,那么可在软件层面实现,如典型的Nginx
等,软件层的负载也是本文的重点,毕竟Boss
们的准则之一就是:「能靠技术实现的就尽量不花钱。」
❝
当然,如果你认为本文对你而言有帮助,记得点赞、收藏、关注三连噢!
❞
基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
一、性能怪兽-Nginx概念深入浅出
Nginx
是目前负载均衡技术中的主流方案,几乎绝大部分项目都会使用它,Nginx
是一个轻量级的高性能HTTP
反向代理服务器,同时它也是一个通用类型的代理服务器,支持绝大部分协议,如TCP、UDP、SMTP、HTTPS
等。Nginx
与Redis相同,都是基于多路复用模型构建出的产物,因此它与Redis
同样具备「资源占用少、并发支持高」 的特点,在理论上单节点的Nginx
同时支持5W
并发连接,而实际生产环境中,硬件基础到位再结合简单调优后确实能达到该数值。
先来看看Nginx
引入前后,客户端请求处理流程的对比:
原本客户端是直接请求目标服务器,由目标服务器直接完成请求处理工作,但加入Nginx
后,所有的请求会先经过Nginx
,再由其进行分发到具体的服务器处理,处理完成后再返回Nginx
,最后由Nginx
将最终的响应结果返回给客户端。
了解了Nginx
的基本概念后,再来快速搭建一下环境,以及了解一些Nginx
的高级特性,如动静分离、资源压缩、缓存配置、IP
黑名单、高可用保障等。
基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
二、Nginx环境搭建
❶首先创建Nginx
的目录并进入:
[root@localhost]# mkdir /soft && mkdir /soft/nginx/ [root@localhost]# cd /soft/nginx/
❷下载Nginx
的安装包,可以通过FTP
工具上传离线环境包,也可通过wget
命令在线获取安装包:
[root@localhost]# wget https://nginx.org/download/nginx-1.21.6.tar.gz
没有wget
命令的可通过yum
命令安装:
[root@localhost]# yum -y install wget
❸解压Nginx
的压缩包:
[root@localhost]# tar -xvzf nginx-1.21.6.tar.gz
❹下载并安装Nginx
所需的依赖库和包:
[root@localhost]# yum install --downloadonly --downloaddir=/soft/nginx/ gcc-c++ [root@localhost]# yum install --downloadonly --downloaddir=/soft/nginx/ pcre pcre-devel4 [root@localhost]# yum install --downloadonly --downloaddir=/soft/nginx/ zlib zlib-devel [root@localhost]# yum install --downloadonly --downloaddir=/soft/nginx/ openssl openssl-devel
也可以通过yum
命令一键下载(推荐上面哪种方式):
[root@localhost]# yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel
执行完成后,然后ls
查看目录文件,会看一大堆依赖:
紧接着通过rpm
命令依次将依赖包一个个构建,或者通过如下指令一键安装所有依赖包:
[root@localhost]# rpm -ivh --nodeps *.rpm
❺进入解压后的nginx
目录,然后执行Nginx
的配置脚本,为后续的安装提前配置好环境,默认位于/usr/local/nginx/
目录下(可自定义目录):
[root@localhost]# cd nginx-1.21.6 [root@localhost]# ./configure --prefix=/soft/nginx/
❻编译并安装Nginx
:
[root@localhost]# make && make instal
❼最后回到前面的/soft/nginx/
目录,输入ls
即可看见安装nginx
完成后生成的文件。
❽修改安装后生成的conf
目录下的nginx.conf
配置文件:
[root@localhost]# vi conf/nginx.conf 修改端口号:listen 80; 修改IP地址:server_name 你当前机器的本地IP(线上配置域名);
❾制定配置文件并启动Nginx
:
[root@localhost]# sbin/nginx -c conf/nginx.conf [root@localhost]# ps aux | grep nginx
Nginx
其他操作命令:
sbin/nginx -t -c conf/nginx.conf # 检测配置文件是否正常 sbin/nginx -s reload -c conf/nginx.conf # 修改配置后平滑重启 sbin/nginx -s quit # 优雅关闭Nginx,会在执行完当前的任务后再退出 sbin/nginx -s stop # 强制终止Nginx,不管当前是否有任务在执行
❿开放80
端口,并更新防火墙:
[root@localhost]# firewall-cmd --zone=public --add-port=80/tcp --permanent [root@localhost]# firewall-cmd --reload [root@localhost]# firewall-cmd --zone=public --list-ports
⓫在Windows/Mac
的浏览器中,直接输入刚刚配置的IP
地址访问Nginx
:
最终看到如上的Nginx
欢迎界面,代表Nginx
安装完成。
三、Nginx反向代理-负载均衡
首先通过SpringBoot+Freemarker
快速搭建一个WEB
项目:springboot-web-nginx,然后在该项目中,创建一个IndexNginxController.java
文件,逻辑如下:
@Controller public class IndexNginxController { @Value("${server.port}") private String port; @RequestMapping("/") public ModelAndView index(){ ModelAndView model = new ModelAndView(); model.addObject("port", port); model.setViewName("index"); return model; } }
在该Controller
类中,存在一个成员变量:port
,它的值即是从application.properties
配置文件中获取server.port
值。当出现访问/
资源的请求时,跳转前端index
页面,并将该值携带返回。
前端的index.ftl
文件代码如下:
<html> <head> <title>Nginx演示页面</title> <link href="nginx_style.css" rel="stylesheet" type="text/css"/> </head> <body> <div style="border: 2px solid red;margin: auto;width: 800px;text-align: center"> <div id="nginx_title"> <h1>欢迎来到熊猫高级会所,我是竹子${port}号!</h1> </div> </div> </body> </html>
从上可以看出其逻辑并不复杂,仅是从响应中获取了port
输出。
OK~,前提工作准备就绪后,再简单修改一下nginx.conf
的配置即可:
upstream nginx_boot{ # 30s内检查心跳发送两次包,未回复就代表该机器宕机,请求分发权重比为1:2 server 192.168.0.000:8080 weight=100 max_fails=2 fail_timeout=30s; server 192.168.0.000:8090 weight=200 max_fails=2 fail_timeout=30s; # 这里的IP请配置成你WEB服务所在的机器IP } server { location / { root html; # 配置一下index的地址,最后加上index.ftl。 index index.html index.htm index.jsp index.ftl; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; # 请求交给名为nginx_boot的upstream上 proxy_pass http://nginx_boot; } }
❝
至此,所有的前提工作准备就绪,紧接着再启动
Nginx
,然后再启动两个web
服务,第一个WEB
服务启动时,在application.properties
配置文件中,将端口号改为8080
,第二个WEB
服务启动时,将其端口号改为8090
。❞
最终来看看效果:
负载均衡效果-动图演示
因为配置了请求分发的权重,8080、8090
的权重比为2:1
,因此请求会根据权重比均摊到每台机器,也就是8080
一次、8090
两次、8080
一次......
Nginx请求分发原理
客户端发出的请求192.168.12.129
最终会转变为:http://192.168.12.129:80/
,然后再向目标IP
发起请求,流程如下:
请求分发原理
- 由于
Nginx
监听了192.168.12.129
的80
端口,所以最终该请求会找到Nginx
进程; Nginx
首先会根据配置的location
规则进行匹配,根据客户端的请求路径/
,会定位到location /{}
规则;- 然后根据该
location
中配置的proxy_pass
会再找到名为nginx_boot
的upstream
; - 最后根据
upstream
中的配置信息,将请求转发到运行WEB
服务的机器处理,由于配置了多个WEB
服务,且配置了权重值,因此Nginx
会依次根据权重比分发请求。
四、Nginx动静分离
动静分离应该是听的次数较多的性能优化方案,那先思考一个问题:「为什么需要做动静分离呢?它带来的好处是什么?」 其实这个问题也并不难回答,当你搞懂了网站的本质后,自然就理解了动静分离的重要性。先来以淘宝为例分析看看:
淘宝首页
当浏览器输入www.taobao.com
访问淘宝首页时,打开开发者调试工具可以很明显的看到,首页加载会出现100+
的请求数,而正常项目开发时,静态资源一般会放入到resources/static/
目录下:
IDEA 工程结构
在项目上线部署时,这些静态资源会一起打成包,那此时思考一个问题:「假设淘宝也是这样干的,那么首页加载时的请求最终会去到哪儿被处理?」 答案毋庸置疑,首页100+
的所有请求都会来到部署WEB
服务的机器处理,那则代表着一个客户端请求淘宝首页,就会对后端服务器造成100+
的并发请求。毫无疑问,这对于后端服务器的压力是尤为巨大的。
❝
但此时不妨分析看看,首页
100+
的请求中,是不是至少有60+
是属于*.js、*.css、*.html、*.jpg.....
这类静态资源的请求呢?答案是Yes
。❞
既然有这么多请求属于静态的,这些资源大概率情况下,长时间也不会出现变动,那为何还要让这些请求到后端再处理呢?能不能在此之前就提前处理掉?当然OK
,因此经过分析之后能够明确一点:「做了动静分离之后,至少能够让后端服务减少一半以上的并发量。」 到此时大家应该明白了动静分离能够带来的性能收益究竟有多大。
OK~,搞清楚动静分离的必要性之后,如何实现动静分离呢?其实非常简单,实战看看。
①先在部署Nginx
的机器,Nginx
目录下创建一个目录static_resources
:
❝
mkdir static_resources
❞
②将项目中所有的静态资源全部拷贝到该目录下,而后将项目中的静态资源移除重新打包。
③稍微修改一下nginx.conf
的配置,增加一条location
匹配规则:
location ~ .*\.(html|htm|gif|jpg|jpeg|bmp|png|ico|txt|js|css){ root /soft/nginx/static_resources; expires 7d; }
然后照常启动nginx
和移除了静态资源的WEB
服务,你会发现原本的样式、js
效果、图片等依旧有效,如下:
其中static
目录下的nginx_style.css
文件已被移除,但效果依旧存在(绿色字体+蓝色大边框):
移除后效果动图
❝
最后解读一下那条
location
规则:location ~ .*\.(html|htm|gif|jpg|jpeg|bmp|png|ico|txt|js|css)
~
代表匹配时区分大小写.*
代表任意字符都可以出现零次或多次,即资源名不限制\.
代表匹配后缀分隔符.
(html|...|css)
代表匹配括号里所有静态资源类型 综上所述,简单一句话概述:「该配置表示匹配以.html~.css
为后缀的所有资源请求。」❞
最后提一嘴,也可以将静态资源上传到文件服务器中,然后location
中配置一个新的upstream
指向。
五、Nginx资源压缩
建立在动静分离的基础之上,如果一个静态资源的Size
越小,那么自然传输速度会更快,同时也会更节省带宽,因此我们在部署项目时,也可以通过Nginx
对于静态资源实现压缩传输,一方面可以节省带宽资源,第二方面也可以加快响应速度并提升系统整体吞吐。
在Nginx
也提供了三个支持资源压缩的模块ngx_http_gzip_module、ngx_http_gzip_static_module、ngx_http_gunzip_module
,其中ngx_http_gzip_module
属于内置模块,代表着可以直接使用该模块下的一些压缩指令,后续的资源压缩操作都基于该模块,先来看看压缩配置的一些参数/指令:
参数项 | 释义 | 参数值 |
gzip |
开启或关闭压缩机制 | on/off; |
gzip_types |
根据文件类型选择性开启压缩机制 | image/png、text/css... |
gzip_comp_level |
用于设置压缩级别,级别越高越耗时 | 1~9 (越高压缩效果越好) |
gzip_vary |
设置是否携带Vary:Accept-Encoding 头域的响应头部 |
on/off; |
gzip_buffers |
设置处理压缩请求的缓冲区数量和大小 | 数量 大小,如16 8k; |
gzip_disable |
针对不同客户端的请求来设置是否开启压缩 | 如 .*Chrome.*; |
gzip_http_version |
指定压缩响应所需要的最低HTTP 请求版本 |
如1.1; |
gzip_min_length |
设置触发压缩的文件最低大小 | 如512k; |
gzip_proxied |
对于后端服务器的响应结果是否开启压缩 | off、expired、no-cache... |
了解了Nginx
中的基本压缩配置后,接下来可以在Nginx
中简单配置一下:
http{ # 开启压缩机制 gzip on; # 指定会被压缩的文件类型(也可自己配置其他类型) gzip_types text/plain application/javascript text/css application/xml text/javascript image/jpeg image/gif image/png; # 设置压缩级别,越高资源消耗越大,但压缩效果越好 gzip_comp_level 5; # 在头部中添加Vary: Accept-Encoding(建议开启) gzip_vary on; # 处理压缩请求的缓冲区数量和大小 gzip_buffers 16 8k; # 对于不支持压缩功能的客户端请求不开启压缩机制 gzip_disable "MSIE [1-6]\."; # 低版本的IE浏览器不支持压缩 # 设置压缩响应所支持的HTTP最低版本 gzip_http_version 1.1; # 设置触发压缩的最小阈值 gzip_min_length 2k; # 关闭对后端服务器的响应结果进行压缩 gzip_proxied off; }
在上述的压缩配置中,最后一个gzip_proxied
选项,可以根据系统的实际情况决定,总共存在多种选项:
off
:关闭Nginx
对后台服务器的响应结果进行压缩。expired
:如果响应头中包含Expires
信息,则开启压缩。no-cache
:如果响应头中包含Cache-Control:no-cache
信息,则开启压缩。no-store
:如果响应头中包含Cache-Control:no-store
信息,则开启压缩。private
:如果响应头中包含Cache-Control:private
信息,则开启压缩。no_last_modified
:如果响应头中不包含Last-Modified
信息,则开启压缩。no_etag
:如果响应头中不包含ETag
信息,则开启压缩。auth
:如果响应头中包含Authorization
信息,则开启压缩。any
:无条件对后端的响应结果开启压缩机制。
OK~,简单修改好了Nginx
的压缩配置后,可以在原本的index
页面中引入一个jquery-3.6.0.js
文件:
<script type="text/javascript" src="jquery-3.6.0.js"></script>
分别来对比下压缩前后的区别:
从图中可以很明显看出,未开启压缩机制前访问时,js
文件的原始大小为230K
,当配置好压缩后再重启Nginx
,会发现文件大小从230KB→69KB
,效果立竿见影!
❝
注意点:①对于图片、视频类型的数据,会默认开启压缩机制,因此一般无需再次开启压缩。②对于
.js
文件而言,需要指定压缩类型为application/javascript
,而并非text/javascript、application/x-javascript
。❞
六、Nginx缓冲区
先来思考一个问题,接入Nginx
的项目一般请求流程为:“客户端→Nginx
→服务端”,在这个过程中存在两个连接:“客户端→Nginx
、Nginx
→服务端”,那么两个不同的连接速度不一致,就会影响用户的体验(比如浏览器的加载速度跟不上服务端的响应速度)。其实也就类似电脑的内存跟不上CPU
速度,所以对于用户造成的体验感极差,因此在CPU
设计时都会加入三级高速缓冲区,用于缓解CPU
和内存速率不一致的矛盾。在Nginx
也同样存在缓冲区的机制,主要目的就在于:「用来解决两个连接之间速度不匹配造成的问题」 ,有了缓冲后,Nginx
代理可暂存后端的响应,然后按需供给数据给客户端。先来看看一些关于缓冲区的配置项:
proxy_buffering
:是否启用缓冲机制,默认为on
关闭状态。client_body_buffer_size
:设置缓冲客户端请求数据的内存大小。proxy_buffers
:为每个请求/连接设置缓冲区的数量和大小,默认4 4k/8k
。proxy_buffer_size
:设置用于存储响应头的缓冲区大小。proxy_busy_buffers_size
:在后端数据没有完全接收完成时,Nginx
可以将busy
状态的缓冲返回给客户端,该参数用来设置busy
状态的buffer
具体有多大,默认为proxy_buffer_size*2
。proxy_temp_path
:当内存缓冲区存满时,可以将数据临时存放到磁盘,该参数是设置存储缓冲数据的目录。
path
是临时目录的路径。- 语法:
proxy_temp_path path;
proxy_temp_file_write_size
:设置每次写数据到临时文件的大小限制。proxy_max_temp_file_size
:设置临时的缓冲目录中允许存储的最大容量。- 非缓冲参数项:
proxy_connect_timeout
:设置与后端服务器建立连接时的超时时间。proxy_read_timeout
:设置从后端服务器读取响应数据的超时时间。proxy_send_timeout
:设置向后端服务器传输请求数据的超时时间。
具体的nginx.conf
配置如下:
http{ proxy_connect_timeout 10; proxy_read_timeout 120; proxy_send_timeout 10; proxy_buffering on; client_body_buffer_size 512k; proxy_buffers 4 64k; proxy_buffer_size 16k; proxy_busy_buffers_size 128k; proxy_temp_file_write_size 128k; proxy_temp_path /soft/nginx/temp_buffer; }
上述的缓冲区参数,是基于每个请求分配的空间,而并不是所有请求的共享空间。当然,具体的参数值还需要根据业务去决定,要综合考虑机器的内存以及每个请求的平均数据大小。
❝
最后提一嘴:使用缓冲也可以减少即时传输带来的带宽消耗。
❞
七、Nginx缓存机制
对于性能优化而言,缓存是一种能够大幅度提升性能的方案,因此几乎可以在各处都能看见缓存,如客户端缓存、代理缓存、服务器缓存等等,Nginx
的缓存则属于代理缓存的一种。对于整个系统而言,加入缓存带来的优势额外明显:
- 减少了再次向后端或文件服务器请求资源的带宽消耗。
- 降低了下游服务器的访问压力,提升系统整体吞吐。
- 缩短了响应时间,提升了加载速度,打开页面的速度更快。
那么在Nginx
中,又该如何配置代理缓存呢?先来看看缓存相关的配置项:
proxy_cache_path
:代理缓存的路径。
path
:缓存的路径地址。levels
:缓存存储的层次结构,最多允许三层目录。use_temp_path
:是否使用临时目录。keys_zone
:指定一个共享内存空间来存储热点Key
(1M
可存储8000
个Key
)。inactive
:设置缓存多长时间未被访问后删除(默认是十分钟)。max_size
:允许缓存的最大存储空间,超出后会基于LRU
算法移除缓存,Nginx
会创建一个Cache manager
的进程移除数据,也可以通过purge
方式。manager_files
:manager
进程每次移除缓存文件数量的上限。manager_sleep
:manager
进程每次移除缓存文件的时间上限。manager_threshold
:manager
进程每次移除缓存后的间隔时间。loader_files
:重启Nginx
载入缓存时,每次加载的个数,默认100
。loader_sleep
:每次载入时,允许的最大时间上限,默认200ms
。loader_threshold
:一次载入后,停顿的时间间隔,默认50ms
。purger
:是否开启purge
方式移除数据。purger_files
:每次移除缓存文件时的数量。purger_sleep
:每次移除时,允许消耗的最大时间。purger_threshold
:每次移除完成后,停顿的间隔时间。- 语法:
proxy_cache_path path [levels=levels] [use_temp_path=on|off] keys_zone=name:size [inactive=time] [max_size=size] [manager_files=number] [manager_sleep=time] [manager_threshold=time] [loader_files=number] [loader_sleep=time] [loader_threshold=time] [purger=on|off] [purger_files=number] [purger_sleep=time] [purger_threshold=time];
- 是的,你没有看错,就是这么长....,解释一下每个参数项的含义:
proxy_cache
:开启或关闭代理缓存,开启时需要指定一个共享内存区域。
zone
为内存区域的名称,即上面中keys_zone
设置的名称。- 语法:
proxy_cache zone | off;
proxy_cache_key
:定义如何生成缓存的键。
string
为生成Key
的规则,如$scheme$proxy_host$request_uri
。- 语法:
proxy_cache_key string;
proxy_cache_valid
:缓存生效的状态码与过期时间。
code
为状态码,time
为有效时间,可以根据状态码设置不同的缓存时间。- 例如:
proxy_cache_valid 200 302 30m;
- 语法:
proxy_cache_valid [code ...] time;
proxy_cache_min_uses
:设置资源被请求多少次后被缓存。
number
为次数,默认为1
。- 语法:
proxy_cache_min_uses number;
proxy_cache_use_stale
:当后端出现异常时,是否允许Nginx
返回缓存作为响应。
error
为错误类型,可配置timeout|invalid_header|updating|http_500...
。- 语法:
proxy_cache_use_stale error;
proxy_cache_lock
:对于相同的请求,是否开启锁机制,只允许一个请求发往后端。
- 语法:
proxy_cache_lock on | off;
proxy_cache_lock_timeout
:配置锁超时机制,超出规定时间后会释放请求。
proxy_cache_lock_timeout time;
proxy_cache_methods
:设置对于那些HTTP
方法开启缓存。
method
为请求方法类型,如GET、HEAD
等。- 语法:
proxy_cache_methods method;
proxy_no_cache
:定义不存储缓存的条件,符合时不会保存。
string
为条件,例如$cookie_nocache $arg_nocache $arg_comment;
- 语法:
proxy_no_cache string...;
proxy_cache_bypass
:定义不读取缓存的条件,符合时不会从缓存中读取。
- 和上面
proxy_no_cache
的配置方法类似。 - 语法:
proxy_cache_bypass string...;
add_header
:往响应头中添加字段信息。
- 语法:
add_header fieldName fieldValue
;
$upstream_cache_status
:记录了缓存是否命中的信息,存在多种情况:
MISS
:请求未命中缓存。HIT
:请求命中缓存。EXPIRED
:请求命中缓存但缓存已过期。STALE
:请求命中了陈旧缓存。REVALIDDATED
:Nginx
验证陈旧缓存依然有效。UPDATING
:命中的缓存内容陈旧,但正在更新缓存。BYPASS
:响应结果是从原始服务器获取的。- PS:这个和之前的不同,之前的都是参数项,这个是一个
Nginx
内置变量。
OK~,对于Nginx
中的缓存配置项大概了解后,接着来配置一下Nginx
代理缓存:
http{ # 设置缓存的目录,并且内存中缓存区名为hot_cache,大小为128m, # 三天未被访问过的缓存自动清楚,磁盘中缓存的最大容量为2GB。 proxy_cache_path /soft/nginx/cache levels=1:2 keys_zone=hot_cache:128m inactive=3d max_size=2g; server{ location / { # 使用名为nginx_cache的缓存空间 proxy_cache hot_cache; # 对于200、206、304、301、302状态码的数据缓存1天 proxy_cache_valid 200 206 304 301 302 1d; # 对于其他状态的数据缓存30分钟 proxy_cache_valid any 30m; # 定义生成缓存键的规则(请求的url+参数作为key) proxy_cache_key $host$uri$is_args$args; # 资源至少被重复访问三次后再加入缓存 proxy_cache_min_uses 3; # 出现重复请求时,只让一个去后端读数据,其他的从缓存中读取 proxy_cache_lock on; # 上面的锁超时时间为3s,超过3s未获取数据,其他请求直接去后端 proxy_cache_lock_timeout 3s; # 对于请求参数或cookie中声明了不缓存的数据,不再加入缓存 proxy_no_cache $cookie_nocache $arg_nocache $arg_comment; # 在响应头中添加一个缓存是否命中的状态(便于调试) add_header Cache-status $upstream_cache_status; } } }
接着来看一下效果,如下:
第一次访问时,因为还没有请求过资源,所以缓存中没有数据,因此没有命中缓存。第二、三次,依旧没有命中缓存,直至第四次时才显示命中,这是为什么呢?因为在前面的缓存配置中,我们配置了加入缓存的最低条件为:「资源至少要被请求三次以上才会加入缓存。」 这样可以避免很多无效缓存占用空间。