m基于信道差错概率模型仿真对比RS,汉明码以及卷积编译码性能,仿真输出信道差错概率与误码率和仿真速度三维关系图

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: m基于信道差错概率模型仿真对比RS,汉明码以及卷积编译码性能,仿真输出信道差错概率与误码率和仿真速度三维关系图

1.算法仿真效果
matlab2022a仿真结果如下:

   在数字通信系统中, 数字通信系统及其相关部分必须满足误码率的最低规 范要求。误码率是一个非常重要的指标,它衡量着系统性能的好坏,因此在数 字通信领域中经常会遇到误码率的测试问题。误码率[是二进制比特流经过系 统传输后发生差错的概率,其测量方法[ 68]从系统的输入端输入某种预定形式的 比特流,检测其输出,并与输入码流比较即可检测出发生差错的位e,位数e和 已传输的总位数n之比为误码率.

1.仿照实际实验建立仿真模型,仿真模块主要包括信号发 生器模块,信道编码模块,理想二进制突发信道,译码模块,误码分析模块。
2.设置模块参数:仿真中主要用到的主要参数变量有:采样率,每帧采样 数,编码格式,采样点数,译码格式,接收延迟。
3.在上述参数下,.采用不同的编码方式:线形编码,循环编码,卷积编码 算法仿真在一定的信道差错概率下,编码算法对信道性能,即误码率的改善情 况。
4.在信道误码率逐渐增大的情况下,仿真编码算法对信道性能的改善情 况。
98aa05e35c73e24dfd8845843bc59e15_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c301c56629012abe5eb57c069dcfff8c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1df484325f21df348cdb1cb9a933b75d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
4fe571d13d1883bdf2a75f1f1453c890_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   大气激光通信是采用频率极高的光波[ 3]作为信息的传输载体的一种通信方 式,由于光载波的频率高、能量集中、方向性强、可用频谱宽等特点,与其他 通信方式相比,大气光通信具有以下优点: 

(1)通信容量大,可以用于宽带接入解决最后一英里的瓶颈问题。目前 卫星微波通信使用的频段在300MHz到300GHz之间,而卫星光通信的频段为 300THz,两者相差103到10 6倍。 (2)保密性好,可用于需要严格保密的场合,尤其用于军事领域;因为 它的发散角小,波束很窄,又非常定向,截接很难做到。因此,大气光通信比 通常的无线系统安全得多。
(3)抗电磁干扰,由于光波频率比电磁波频率高几个数量级,电磁波很 难对光波传输形成干扰。
(4)协议的透明性,以光为传输机制,任何传输协议均可容易的迭加上 去,电路和数据业务都可透明传输。

   在卫星光通信系统中,信息经过大气进行传输,受到大气湍流,散射等作 用的影响,使光信号受到严重干扰,造成在接收端的较大误码率和短时间的通 信中断,严重影响无线光通信系统的稳定性和可靠性。因此,要保证在随机信 道条件下系统的正常工作,提出有效的手段克服大气的干扰,对激光大气通信 来说十分必要和紧迫。信道编码技术可以降低误码率,提高通信质量,因而信 信道编码技术是卫星光通信系统的关键技术之一。 

   卷积码是1955年由爱里斯(Elias)提出的。它与分组码不同,分组码编码 时,本组的n-k个检验元仅与k个信息元有关,而与其它各组码元无关。分组 码译码时,也仅从本码组中的码元内提取有关译码信息,而与其它各组无关。 卷积码则不同,它在编码时,本组的n-k个检验元不仅与本组的k个信息元有 关,而且还与以前各时刻输入至编码器的信息元有关;译码时也须利用以前和 以后各时刻收到的码组中提取有关信息。此外,卷积码中每组的信息位和码 长,通常要比分组码的要小。正由于在卷积码的编码过程中,充分利用了各组 之间的相关性,且n和k都比较小,因此,在与分组码同样的码率R和设备复 杂性条件下,无论是理论上还是实际上均已证明卷积码的性能至少不比分组码 差,且实现最佳和准最佳也较分组码容易,但是,在工程应用中,由于卷积码 各组之间相关,一致性能分析比较困难,从分析上得到的成果也不像分组码那 么多,而往往要借助计算机的搜索来寻找好码。 

   Reed-Solomon码首先是由Reed和Solomon两人于1960年提出来的,简 称为RS码。这是一类具有很强纠错能力的二进制循环码,既能纠正随机错误 也能纠正突发错误,也是一类典型的代数几何码。RS码一直以来都是国际通 信领域研究的热点之一。 


3.MATLAB核心程序

n         = 7;       
Step         = 20;%仿真时间间隔
Simu_Len     = 1000*k;  %仿真的时间长度
Simu_time    = 2000;
Pf           = 1e-3  :  (10e-3-1e-3)/Step  :  10e-3-(10e-3-1e-3)/Step;         %信道差错概率
Simu_speed   = 3*10^10/Step : 3*10^10/Step : 3*10^10;
msg          = (double(rand(1,Simu_Len)>0.5))';
Rs_Encoder   = fec.rsenc(n,k);
Rs_Decoder   = fec.rsdec(Rs_Encoder);
%% 主体代码
for i = 1:length(Pf)
    Err   = zeros(1,Simu_time);
    
    for j = 1:Simu_time
        i
        j
        %编码
        Msg_Enc  = encode(Rs_Encoder,msg);
        Msg_Enc2 = Msg_Enc;
        %将数据通过信道
        idx                     = round(length(Msg_Enc)*Pf(i));
        idx2                    = round(length(Msg_Enc)*rand(1,idx));
        idx2(find(idx2 == 0))   = 1;
        Msg_Enc2(idx2)          = floor(rand(1,1)*Msg_Enc(idx2));%设置出错值
        
        %译码
        [Msg_Dec,cnumerr,ccode] = decode(Rs_Decoder,Msg_Enc2);
        
        %计算误码率
        Err(j)                  = biterr(Msg_Dec,msg);   
    end
    
    Err2(i) = sum(Err)/(Simu_time*Simu_Len);
    
end
%% 曲线仿真
figure;
semilogy(Pf,Err2,'b-*');
xlabel('channel error rate');
ylabel('BER');
%% 3D图
figure;
[X,Y]  = meshgrid(Simu_speed,Pf); 
Error  = [Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' ];
mesh(X,Y,Error);
xlabel('信道差错概率');
ylabel('仿真速度');
zlabel('误码率');
相关文章
|
8月前
|
算法
m基于OFDM+QPSK和LDPC编译码以及MMSE信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
MATLAB2022a仿真实现了无线图像传输的算法,包括OFDM、QPSK调制、LDPC编码和MMSE信道估计。OFDM抗频率选择性衰落,QPSK用相位表示二进制,LDPC码用于前向纠错,MMSE估计信道响应。算法流程涉及编码、调制、信道估计、均衡、解码和图像重建。MATLAB代码展示了从串行数据到OFDM信号的生成,经过信道模型、噪声添加,再到接收端的信道估计和解码过程,最终计算误码率。
89 1
|
7天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
43 5
|
5月前
|
算法 5G Windows
OFDM系统中的信号检测算法分类和详解
参考文献 [1]周健, 张冬. MIMO-OFDM系统中的信号检测算法(I)[J]. 南京工程学院学报(自然科学版), 2010. [2]王华龙.MIMO-OFDM系统传统信号检测算法[J].科技创新与应用,2016(23):63.
87 4
|
8月前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
76 1
|
算法 异构计算
m基于uw导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench
m基于uw导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench
112 2
|
机器学习/深度学习 算法
m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试
m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试
374 0
|
8月前
|
资源调度 算法
m基于OFDM+QPSK和LDPC编译码以及LS信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
m基于OFDM+QPSK和LDPC编译码以及LS信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
79 2
|
算法
m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计
m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计
284 0
|
算法 异构计算
m基于PN导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench
m基于PN导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench
128 0
|
机器学习/深度学习 传感器 算法
基于LS和MMSE实现OFDM通信链路信道估计的仿真和分析
基于LS和MMSE实现OFDM通信链路信道估计的仿真和分析

热门文章

最新文章