m基于信道差错概率模型仿真对比RS,汉明码以及卷积编译码性能,仿真输出信道差错概率与误码率和仿真速度三维关系图

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: m基于信道差错概率模型仿真对比RS,汉明码以及卷积编译码性能,仿真输出信道差错概率与误码率和仿真速度三维关系图

1.算法仿真效果
matlab2022a仿真结果如下:

   在数字通信系统中, 数字通信系统及其相关部分必须满足误码率的最低规 范要求。误码率是一个非常重要的指标,它衡量着系统性能的好坏,因此在数 字通信领域中经常会遇到误码率的测试问题。误码率[是二进制比特流经过系 统传输后发生差错的概率,其测量方法[ 68]从系统的输入端输入某种预定形式的 比特流,检测其输出,并与输入码流比较即可检测出发生差错的位e,位数e和 已传输的总位数n之比为误码率.

1.仿照实际实验建立仿真模型,仿真模块主要包括信号发 生器模块,信道编码模块,理想二进制突发信道,译码模块,误码分析模块。
2.设置模块参数:仿真中主要用到的主要参数变量有:采样率,每帧采样 数,编码格式,采样点数,译码格式,接收延迟。
3.在上述参数下,.采用不同的编码方式:线形编码,循环编码,卷积编码 算法仿真在一定的信道差错概率下,编码算法对信道性能,即误码率的改善情 况。
4.在信道误码率逐渐增大的情况下,仿真编码算法对信道性能的改善情 况。
98aa05e35c73e24dfd8845843bc59e15_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c301c56629012abe5eb57c069dcfff8c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1df484325f21df348cdb1cb9a933b75d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
4fe571d13d1883bdf2a75f1f1453c890_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   大气激光通信是采用频率极高的光波[ 3]作为信息的传输载体的一种通信方 式,由于光载波的频率高、能量集中、方向性强、可用频谱宽等特点,与其他 通信方式相比,大气光通信具有以下优点: 

(1)通信容量大,可以用于宽带接入解决最后一英里的瓶颈问题。目前 卫星微波通信使用的频段在300MHz到300GHz之间,而卫星光通信的频段为 300THz,两者相差103到10 6倍。 (2)保密性好,可用于需要严格保密的场合,尤其用于军事领域;因为 它的发散角小,波束很窄,又非常定向,截接很难做到。因此,大气光通信比 通常的无线系统安全得多。
(3)抗电磁干扰,由于光波频率比电磁波频率高几个数量级,电磁波很 难对光波传输形成干扰。
(4)协议的透明性,以光为传输机制,任何传输协议均可容易的迭加上 去,电路和数据业务都可透明传输。

   在卫星光通信系统中,信息经过大气进行传输,受到大气湍流,散射等作 用的影响,使光信号受到严重干扰,造成在接收端的较大误码率和短时间的通 信中断,严重影响无线光通信系统的稳定性和可靠性。因此,要保证在随机信 道条件下系统的正常工作,提出有效的手段克服大气的干扰,对激光大气通信 来说十分必要和紧迫。信道编码技术可以降低误码率,提高通信质量,因而信 信道编码技术是卫星光通信系统的关键技术之一。 

   卷积码是1955年由爱里斯(Elias)提出的。它与分组码不同,分组码编码 时,本组的n-k个检验元仅与k个信息元有关,而与其它各组码元无关。分组 码译码时,也仅从本码组中的码元内提取有关译码信息,而与其它各组无关。 卷积码则不同,它在编码时,本组的n-k个检验元不仅与本组的k个信息元有 关,而且还与以前各时刻输入至编码器的信息元有关;译码时也须利用以前和 以后各时刻收到的码组中提取有关信息。此外,卷积码中每组的信息位和码 长,通常要比分组码的要小。正由于在卷积码的编码过程中,充分利用了各组 之间的相关性,且n和k都比较小,因此,在与分组码同样的码率R和设备复 杂性条件下,无论是理论上还是实际上均已证明卷积码的性能至少不比分组码 差,且实现最佳和准最佳也较分组码容易,但是,在工程应用中,由于卷积码 各组之间相关,一致性能分析比较困难,从分析上得到的成果也不像分组码那 么多,而往往要借助计算机的搜索来寻找好码。 

   Reed-Solomon码首先是由Reed和Solomon两人于1960年提出来的,简 称为RS码。这是一类具有很强纠错能力的二进制循环码,既能纠正随机错误 也能纠正突发错误,也是一类典型的代数几何码。RS码一直以来都是国际通 信领域研究的热点之一。 


3.MATLAB核心程序

n         = 7;       
Step         = 20;%仿真时间间隔
Simu_Len     = 1000*k;  %仿真的时间长度
Simu_time    = 2000;
Pf           = 1e-3  :  (10e-3-1e-3)/Step  :  10e-3-(10e-3-1e-3)/Step;         %信道差错概率
Simu_speed   = 3*10^10/Step : 3*10^10/Step : 3*10^10;
msg          = (double(rand(1,Simu_Len)>0.5))';
Rs_Encoder   = fec.rsenc(n,k);
Rs_Decoder   = fec.rsdec(Rs_Encoder);
%% 主体代码
for i = 1:length(Pf)
    Err   = zeros(1,Simu_time);
    
    for j = 1:Simu_time
        i
        j
        %编码
        Msg_Enc  = encode(Rs_Encoder,msg);
        Msg_Enc2 = Msg_Enc;
        %将数据通过信道
        idx                     = round(length(Msg_Enc)*Pf(i));
        idx2                    = round(length(Msg_Enc)*rand(1,idx));
        idx2(find(idx2 == 0))   = 1;
        Msg_Enc2(idx2)          = floor(rand(1,1)*Msg_Enc(idx2));%设置出错值
        
        %译码
        [Msg_Dec,cnumerr,ccode] = decode(Rs_Decoder,Msg_Enc2);
        
        %计算误码率
        Err(j)                  = biterr(Msg_Dec,msg);   
    end
    
    Err2(i) = sum(Err)/(Simu_time*Simu_Len);
    
end
%% 曲线仿真
figure;
semilogy(Pf,Err2,'b-*');
xlabel('channel error rate');
ylabel('BER');
%% 3D图
figure;
[X,Y]  = meshgrid(Simu_speed,Pf); 
Error  = [Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' Err2' ];
mesh(X,Y,Error);
xlabel('信道差错概率');
ylabel('仿真速度');
zlabel('误码率');
相关文章
|
SpringCloudAlibaba Java API
SpringCloudAliBaba篇之gateway:手把手教你搭建服务网关(下)
SpringCloudAliBaba篇之gateway:手把手教你搭建服务网关(下)
738 0
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
DAPO: 面向开源大语言模型的解耦裁剪与动态采样策略优化系统
DAPO(Decoupled Clip and Dynamic Sampling Policy Optimization)是由字节跳动提出的一种突破性的开源大语言模型强化学习系统。基于Qwen2.5-32B基础模型,DAPO在AIME 2024测试中以50分的优异成绩超越了现有最佳模型,
759 6
DAPO: 面向开源大语言模型的解耦裁剪与动态采样策略优化系统
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
Java 数据挖掘 数据库连接
Java使用直接内存的好处
综上所述,Java直接内存的使用为开发者提供了一种绕过JVM堆限制、直接高效操作内存资源的途径,特别适用于高吞吐量、低延迟和大规模数据处理的场景。虽然直接内存的使用需要更精细的管理以避免内存泄漏和过度消耗系统资源,但恰当的利用能够显著提升应用的性能表现,是现代高性能Java应用不可或缺的工具之一。
190 2
|
云安全 弹性计算 安全
阿里云服务器基础安全防护简介,云服务器基础安全防护及常见安全产品简介
在使用云服务器的过程中,云服务器的安全问题是很多用户非常关心的问题,阿里云服务器不仅提供了一些基础防护,我们也可以选择其他的云安全类产品来确保我们云服务器的安全。本文为大家介绍一下阿里云服务器的基础安全防护有哪些,以及阿里云的一些安全防护类云产品。
阿里云服务器基础安全防护简介,云服务器基础安全防护及常见安全产品简介
|
Linux
在 Linux 系统中,`find` 命令是一个强大的文件查找工具
在 Linux 系统中,`find` 命令是一个强大的文件查找工具。本文详细介绍了 `find` 命令的基本语法、常用选项和具体应用示例,帮助用户快速掌握如何根据文件名、类型、大小、修改时间等条件查找文件,并展示了如何结合逻辑运算符、正则表达式和排除特定目录等高级用法。
2233 6
|
Java 监控 自然语言处理
一站式链路追踪:阿里云的端到端解决方案
端到端链路追踪是覆盖全部关联 IT 系统,能够完整记录用户行为在系统间调用路径与状态的最佳实践方案。而真正实现端到端链路追踪,需要解决三个难题:链路插桩、链路采集与加工、链路上下文透传。阿里云 ARMS 目前已支持全链路端到端追踪,快来查看转发吧~
61906 104
|
机器学习/深度学习 并行计算 PyTorch
GPU 加速与 PyTorch:最大化硬件性能提升训练速度
【8月更文第29天】GPU(图形处理单元)因其并行计算能力而成为深度学习领域的重要组成部分。本文将介绍如何利用PyTorch来高效地利用GPU进行深度学习模型的训练,从而最大化训练速度。我们将讨论如何配置环境、选择合适的硬件、编写高效的代码以及利用高级特性来提高性能。
2192 1
|
监控 数据挖掘 数据安全/隐私保护
ERP系统中的固定资产管理
【7月更文挑战第25天】 ERP系统中的固定资产管理
567 2
|
Java API 应用服务中间件
Java一分钟之-JNDI:Java命名和目录接口
【6月更文挑战第3天】JNDI,Java Naming and Directory Interface,是Java的API,用于访问命名和目录服务。本文聚焦JNDI常见问题和易错点:1) 初始化Context时需正确配置环境属性;2) 查找资源时确保名称与服务器配置一致;3) 别忘了导入JNDI库和妥善处理异常;4) 使用后记得关闭资源。理解JNDI并避免这些问题能提升应用的可维护性和灵活性。
488 2

热门文章

最新文章