海量请求下的接口并发解决方案

简介: 海量请求下的接口并发解决方案



设定一个场景,假如一个商品接口在某段时间突然上升,会怎么办?

生活中的例子来说,假设冰墩墩在当天晚上上热搜之后,迅速有十几万人去淘宝下单购买,此时并没有做好对该商品的缓存预热以及准备,如何操作?

对于这个问题,在电商高并发系统中,对接口的保护一般采用:缓存、限流、降级 来操作。

假设该接口已经接受过风控的处理,过滤掉一半的机器人脚本请求,剩下都是人为的下单请求。

服务限流

限流 主要的目的是通过对并发访问/请求进行限速,或者对一个时间窗口内的请求进行限速,一旦达到限制速率则可以拒绝服务、排队或等待、降级等处理。

限流算法

1. 漏斗算法

漏桶算法 是当请求到达时直接放入漏桶,如果当前容量已达到上限(限流值),则进行丢弃或其他策略(触发限流策略)。漏桶以固定的速率(根据服务吞吐量)进行释放访问请求(即请求通过),直到漏桶为空。

漏斗算法的思想就是,不管你来多少请求,我的接口消费速度一定是小于等于流出速率的阈值的。

可以基于消息队列来实现。

2. 令牌桶算法

令牌桶算法 是程序以v(v = 时间周期 / 限流值)的速度向令牌桶中增加令牌,直到令牌桶满,请求到达时向令牌桶请求令牌,如果获取成功则通过请求,如果获取失败触发限流策略。

令牌桶算法和漏斗算法的思想差别在于,前者可以允许突发请求的发生。

3. 滑窗算法

滑窗算法 是将一个时间周期分为N个小周期,分别记录每个小周期内访问次数,并且根据时间滑动删除过期的小周期。

如下图所示,假设时间周期为1分钟,将1分钟再分为2个小周期,统计每个小周期的访问数量,则可以看到,第一个时间周期内,访问数量为75,第二个时间周期内,访问数量为100,如果一个时间周期内所有的小周期总和超过100的话,则会触发限流策略。

Sentinel的实现 和 TCP滑窗。

接入层限流

Nginx限流

Nginx 限流采用的是漏桶算法。

它可以根据客户端特征,限制其访问频率,客户端特征主要指 IP、UserAgent等。使用 IP 比 UserAgent 更可靠,因为 IP 无法造假,UserAgent 可随意伪造。

limit_req模块基于IP:

http://nginx.org/en/docs/http/ngx_http_limit_req_module.html

tgngine:

http://tengine.taobao.org/document_cn/http_limit_req_cn.html

本地接口限流

Semaphore

Java 并发库 的 Semaphore 可以很轻松完成信号量控制,Semaphore 可以控制某个资源可被同时访问的个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。

假如我们对外提供一个服务接口,允许最大并发数为40,我们可以这样:

private final Semaphore permit = new Semaphore(40, true);
public void process(){
    try{
        permit.acquire();
        //TODO 处理业务逻辑
    } catch (InterruptedException e) {
        e.printStackTrace();
    } finally {
        permit.release();
    }
}

具体的 Semaphore 实现参考源码。

分布式接口限流

使用消息队列

不管是用MQ中间件,或是Redis的List实现的消息队列,都可以作为一个 缓冲队列 来使用。思想就是基于漏斗算法。

当对于一个接口请求达到一定阈值时,就可以启用消息队列来进行接口数据的缓冲,并根据服务的吞吐量来消费数据。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

服务降级

在接口做好风控的前提下,发现了接口请求的并发量迅速上升,我们可以启用兜底方案,进行服务降级。

一般服务降级应该用来对一些 不重要 或 不紧急 的服务或任务进行服务的 延迟使用 或 暂停使用。

降级方案

停止边缘业务

比如淘宝双11前,就不可以查询三个月前的订单,对边缘业务进行降级,保证核心业务的高可用。

拒绝请求

在接口请求并发量大于阈值,或是接口出现大量失败请求等等突发情况,可以拒绝一些访问请求。

拒绝策略
  • 随机拒绝:随机拒绝超过阈值的请求 。
  • 拒绝旧请求:按照请求的时间,优先拒绝更早收到的请求。
  • 拒绝非核心请求:根据系统业务设置核心请求清单,将非核心清单内的请求拒绝掉。
恢复方案

在实现服务降级之后,对于突增流量我们可以继续注册多个消费者服务来应对并发量,之后我们再对一些服务器进行慢加载。

降级具体实现参考其他文章。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

数据缓存

在接口做好风控的前提下,发现了接口请求的并发量迅速上升,我们可以分以下几个操作执行:

  • 对访问请求使用分布式锁进行阻塞。
  • 在这个短时间中,我们可以将对应操作行的热点数据,缓存在缓存中间件中。
  • 放行请求后,让所有请求优先操作缓存数据。
  • 再将操作的结果通过消息队列发送给消费接口慢慢消费。

缓存问题

假设我们操作的是一个库存接口,此时数据库中只有100个库存。

那假如此时我们将一条数据放入缓存中,如果所有的请求都来访问这个缓存,那它还是被打挂,我们该怎么操作?

读写分离

第一种想法,读写分离。

使用Redis的哨兵集群模式来进行主从复制的读写分离操作。读的操作肯定大于写操作,等库存被消费到0时,读操作直接快速失败。

负载均衡

第二种想法,负载均衡。

在缓存数据后,如果所有请求都来缓存中操作这个库存,不管是加悲观锁还是乐观锁,并发率都很低,此时我们可以对这个库存进行拆分。

我们可以参照 ConcurrentHashMap 中的 counterCells 变量的设计思想,将100个库存拆分到10个缓存服务中,每个缓存服务有10个缓存,然后我们再对请求进行负载均衡到各个缓存服务上。

但是这种方式会有问题,如果大部分用户被hash到同一个缓存上,导致其他缓存没有被消费,却返回没有库存,这是不合理的。

page cache

第三种想法,page cache。

大部分软件架构其实都用到了这种方法,比如linux内核的硬盘写入、mysql的刷盘等等,即将短时间内的写操作聚合结果写入,所有的写操作在缓存内完成。




相关文章
|
6月前
|
边缘计算 JSON 物联网
解锁业务灵活性:RuleGo规则引擎的高效解耦与实时响应秘籍
RuleGo是一个基于Go语言的轻量级、高性能规则引擎,旨在通过动态规则链和组件化设计,简化复杂系统的业务逻辑管理和实时响应。
解锁业务灵活性:RuleGo规则引擎的高效解耦与实时响应秘籍
|
安全 NoSQL API
互联网并发与安全系列教程(08) - API接口幂等设计与实现
互联网并发与安全系列教程(08) - API接口幂等设计与实现
75 0
|
6月前
|
缓存 安全 API
【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的API网关设计实现
公司对外开放的OpenAPI-Server服务,作为核心内部系统与外部系统之间的重要通讯枢纽,每天处理数百万次的API调用、亿级别的消息推送以及TB/PB级别的数据同步。经过多年流量的持续增长,该服务体系依然稳固可靠,展现出强大的负载能力。
167 9
【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的API网关设计实现
|
3月前
|
边缘计算 Kubernetes Cloud Native
边缘计算问题之根据请求响应的时延要求来部署业务应用如何解决
边缘计算问题之根据请求响应的时延要求来部署业务应用如何解决
47 4
|
3月前
|
消息中间件 存储 负载均衡
现代消息队列与云存储问题之进一步减少流处理中的读写操作的问题如何解决
现代消息队列与云存储问题之进一步减少流处理中的读写操作的问题如何解决
|
1月前
|
SQL 缓存 分布式计算
C#如何处理上亿级数据的查询效率
C#如何处理上亿级数据的查询效率
23 1
|
4月前
|
监控 Java 测试技术
开发与运维资源问题之接口A的阻塞情况比接口B更明显,尽管接口B的响应时间更长如何解决
开发与运维资源问题之接口A的阻塞情况比接口B更明显,尽管接口B的响应时间更长如何解决
36 2
开发与运维资源问题之接口A的阻塞情况比接口B更明显,尽管接口B的响应时间更长如何解决
|
6月前
|
网络协议 数据库 数据安全/隐私保护
客户端一个处理多个请求的弊端及解决方案
客户端一个处理多个请求的弊端及解决方案
62 0
|
开发者
直播源码异步处理技术:处理用户请求的挑战
总之,直播源码异步处理技术为应对处理大量用户请求有着重要的作用,是提高直播质量和效率的重要手段,异步处理在直播平台中的应用也越来越广泛,为用户带来更好的观看体
直播源码异步处理技术:处理用户请求的挑战
|
设计模式 NoSQL Java
多线程Reactor分析,从性能,客户接入量方向
多线程Reactor分析,从性能,客户接入量方向
多线程Reactor分析,从性能,客户接入量方向